Skip to main content
Log in

Orthogonal Coded Spread Spectrum Digital Beamforming-Based 5G Receiver

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

5G receiver design at acceptably low cost poses a significant challenge, particularly where the 5G new radio (NR) use cases enhanced mobile broadband (eMBB), massive machine type communication (mMTC) or ultra-reliable low latency communication need to be satisfied. One of the key design parameters that has to be looked at for successful implementation of these use cases is the maintenance of high signal-to-noise ratio (SNR). Consequently for high SNR requirements, implementation of phased array antennas for suitable beamforming in radio access networks has been preferred by 5G systems designers. The authors have proposed an orthogonal coded spread spectrum-based digital beam forming (SSDBF) technique, which can be a better choice for 5G designers. They have introduced orthogonal Fourier codes in the phased array system which drastically reduces the number of circuit elements, thereby minimizing cost, size, weight and power requirements. The proposed scheme has been simulated and tested over a 28 GHz 5G link considering micro- and macro-channel scenarios in urban environments, following established urban micro (UMi) and urban macro (UMa) models, respectively. The results are then compared with a conventional digital beam forming (CDBF) technique. The BER versus SNR of both the SSDBF and CDBF cases are found to be almost equal. Moreover, the scheme is also tested with a \(2\times 2\) MIMO (multiple input multiple output), and the throughput is observed to be almost doubled in comparison with the corresponding SISO (single input single output) implementation, which suggests that the proposed scheme can also be used for MIMO applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Nguyen, D.; Zomorrodi, M.; Karmakar, N.; Ho, K.: Efficient beamforming technique based on sparse MIMO array and spatial filter bank. IEEE Antennas Wirel. Propag. Lett. 19(7), 1147–1151 (2020). https://doi.org/10.1109/LAWP.2020.2991993

    Article  Google Scholar 

  2. Miao, W.; Luo, C.; Min, G.; Zhao, Z.: Lightweight 3-D beamforming design in 5G UAV broadcasting communications. IEEE Trans. Broadcast. 66(2), 515–524 (2020). https://doi.org/10.1109/TBC.2020.2990564

    Article  Google Scholar 

  3. Moghadam, N.N.; Fodor, G.; Bengtsson, M.; Love, D.J.: On the energy efficiency of MIMO hybrid beamforming for millimeter-wave with nonlinear power amplifiers. IEEE Trans. Wireless Commun. 17(11), 7208–7221 (2018). https://doi.org/10.1109/TWC.2018.2865786

    Article  Google Scholar 

  4. Cui, Y.; Fang, X.; Fang, Y.; Xiao, M.: Optimal nonuniform steady mmWave beamforming for high-speed railway. IEEE Trans. Veh. Technol. 67(5), 4350–4358 (2018). https://doi.org/10.1109/TVT.2018.2796621

    Article  Google Scholar 

  5. Rezk, M.; Kim, W.; Yun, Z.; Iskander, M.F.: Performance comparison of a novel hybrid smart antenna system versus the fully adaptive and switched beam antenna arrays. IEEE Antennas Wirel. Propag. Lett. 4, 285–288 (2005). https://doi.org/10.1109/LAWP.2005.854003

    Article  Google Scholar 

  6. Celik, N.; Iskander, M.F.: Genetic-algorithm-based antenna array design for a 60-GHz hybrid smart antenna system. IEEE Antennas Wirel. Propag. Lett. 7, 795–798 (2008). https://doi.org/10.1109/LAWP.2008.2001258

    Article  Google Scholar 

  7. Gu, C.; et al.: Compact smart antenna with electronic beam-switching and reconfigurable polarizations. IEEE Trans. Antennas Propag. 63(12), 5325–5333 (2015). https://doi.org/10.1109/TAP.2015.2490239

    Article  MathSciNet  MATH  Google Scholar 

  8. Kim, I.-M.; Yim, R.; Chaskar, H.: Optimum scheduling for smart antenna systems in Rayleigh fading channels. IEEE Trans. Commun. 53(7), 1210–1219 (2005). https://doi.org/10.1109/TCOMM.2005.851630

    Article  Google Scholar 

  9. Bergamo, M.A.: Spread spectrum digital beamforming (SSDBF) radar. In: 2010 IEEE international symposium on phased array systems and technology, pp. 665–672 (2010). https://doi.org/10.1109/ARRAY.2010.5613293

  10. Bergamo, M.A.; Weedon, W.H.: Spread spectrum digital beamforming virtual array and scalability to millimeter wavelength frequencies MMW-SSDBF virtual array. In: 2013 IEEE International Symposium on Phased Array Systems and Technology, pp. 649-652 (2013). https://doi.org/10.1109/ARRAY.2013.6731906

  11. Tamang, N.D.; Sur, S.N.; Bera, S.; Bera, R.: Assessment of digital beamforming radar (DBF) and spread spectrum digital beamforming radar (SSDBF). In: 2017 14th IEEE India council international conference (INDICON), pp. 1–5 (2017). https://doi.org/10.1109/INDICON.2017.8487745

  12. Matsuoka, H.; Kasami, H.; Tsuruta, M.; Shoki, H.: A smart antenna with pre- and post-FFT hybrid domain beamforming for broadband OFDM system. In: IEEE wireless communications and networking conference, 2006. WCNC 2006, pp. 1916–1920 (2006). https://doi.org/10.1109/WCNC.2006.1696588

  13. Michael, O.; Molineaux, G.; De Doncker P.; Sarrazin, J: IQ based direct sequence spread spectrum spatial data focusing implemented over a 6 Ray Urban Canyon Channel Model, U.R.S.I. France 2020 Conference

  14. Kalis, A.; Kanatas, A.G.; Efthymoglou, G.P.: A co-operative beamforming solution for eliminating multi-hop communications in wireless sensor networks. IEEE J. Sel. Areas Commun. 28(7), 1055–1062 (2010). https://doi.org/10.1109/JSAC.2010.100910

    Article  Google Scholar 

  15. Feng, X.; Shang, Y.: Interference suppression in a MLT based spread spectrum system with digital beamforming. In: 2010 Third international symposium on information science and engineering, pp. 113–116 (2010). https://doi.org/10.1109/ISISE.2010.116

  16. Sun, S.; et al.: Propagation path loss models for 5G urban micro- and macro-cellular scenarios. In: 2016 IEEE 83rd vehicular technology conference (VTC Spring), pp. 1–6 (2016). https://doi.org/10.1109/VTCSpring.2016.7504435

  17. Sun, S.; et al.: Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5G wireless communications. IEEE Trans. Veh. Technol. 65(5), 2843–2860 (2016). https://doi.org/10.1109/TVT.2016.2543139

    Article  Google Scholar 

  18. MacCartney, G.R.; Rappaport, T.S.: Rural macrocell path loss models for millimeter wave wireless communications. IEEE J. Sel. Areas Commun. 35(7), 1663–1677 (2017). https://doi.org/10.1109/JSAC.2017.2699359

    Article  Google Scholar 

  19. Sulyman, A.I.; Alwarafy, A.; MacCartney, G.R.; Rappaport, T.S.; Alsanie, A.: Directional radio propagation path loss models for millimeter-wave wireless networks in the 28-, 60-, and 73-GHz bands. IEEE Trans. Wireless Commun. 15(10), 6939–6947 (2016). https://doi.org/10.1109/TWC.2016.2594067

    Article  Google Scholar 

  20. Cheng, H.; Ma, S.; Lee, H.; Cho, M.: Millimeter wave path loss modeling for 5G communications using deep learning with dilated convolution and attention. IEEE Access 9, 62867–62879 (2021). https://doi.org/10.1109/ACCESS.2021.3070711

    Article  Google Scholar 

  21. Chen, H.; Chu, S.; Guizani, M.: On next generation CDMA technologies: the real approach for perfect orthogonal code generation. IEEE Trans. Veh. Technol. 57(5), 2822–2833 (2008). https://doi.org/10.1109/TVT.2007.914055

    Article  Google Scholar 

  22. Akansu, A.N.; Poluri, R.: Walsh-like nonlinear phase orthogonal codes for direct sequence CDMA communications. IEEE Trans. Signal Process. 55(7), 3800–3806 (2007). https://doi.org/10.1109/TSP.2007.894229

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, R.; Ho, C.K.: MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans. Wireless Commun. 12(5), 1989–2001 (2013). https://doi.org/10.1109/TWC.2013.031813.120224

    Article  Google Scholar 

  24. Ngo, H.Q.; Larsson, E.G.; Marzetta, T.L.: Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 61(4), 1436–1449 (2013). https://doi.org/10.1109/TCOMM.2013.020413.110848

    Article  Google Scholar 

  25. Ayach, O.E.; Rajagopal, S.; Abu-Surra, S.; Pi, Z.; Heath, R.W.: Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wireless Commun. 13(3), 1499–1513 (2014). https://doi.org/10.1109/TWC.2014.011714.130846

    Article  Google Scholar 

  26. Hoydis, J.; ten Brink, S.; Debbah, M.: Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE J. Sel. Areas Commun. 31(2), 160–171 (2013). https://doi.org/10.1109/JSAC.2013.130205

    Article  Google Scholar 

  27. Hussein, H.H.; Elsayed, H.A.; Abd El-kader, S.M.: Intensive benchmarking of D2D communication over 5G cellular networks: prototype, integrated features, challenges, and main applications. Wireless Netw. 26, 3183–3202 (2020). https://doi.org/10.1007/s11276-019-02131-2

    Article  Google Scholar 

  28. Gismalla, M.S.M.; et al.: Survey on device to device (D2D) communication for 5GB/6G networks: concept, applications, challenges, and future directions. IEEE Access 10, 30792–30821 (2022). https://doi.org/10.1109/ACCESS.2022.3160215

    Article  Google Scholar 

  29. Fan, B.; Hosseini, S.A.; Krishnakumar, P.; Ng, C.; Aazhang, B.: A 5G framework for user distribution aided beamforming and iterative traffic sensing. In: ICC 2019 - 2019 IEEE International Conference on Communications (ICC), pp. 1–6 (2019). https://doi.org/10.1109/ICC.2019.8761095

  30. Rahimi, P.; Chrysostomou, C.; Pervaiz, H.; Vassiliou, V.; Ni, Q.: Joint radio resource allocation and beamforming optimization for industrial internet of things in software-defined networking-based virtual fog-radio access network 5G-and-beyond wireless environments. IEEE Trans. Industr. Inf. 18(6), 4198–4209 (2022). https://doi.org/10.1109/TII.2021.3126813

    Article  Google Scholar 

  31. Gatzianas, M.; Kalfas, G.; Mesodiakaki, A.; Vagionas, C.; Pleros, N.: Traffic-aware coordinated beamforming for mmWave backhauling of 5G dense networks. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2021.3135710

  32. Cao, Y.; Ayed, A.B.; Xia, J.; Boumaiza, S.: Uniformly Distributed near-field probing array for enhancing the performance of 5G millimeter-wave beamforming transmitters. IEEE Microwave Wirel. Compon. Lett. 31(6), 823–826 (2021). https://doi.org/10.1109/LMWC.2021.3067168

    Article  Google Scholar 

  33. Kim, D.-C.; Chi, Y.-E.; Park, J.; Minz, L.; Park, S.-O.: High-resolution digital beamforming receiver using DDS-PLL signal generator for 5G mobile communication. IEEE Trans. Antennas Propag. 70(2), 1428–1439 (2022). https://doi.org/10.1109/TAP.2021.3111334

    Article  Google Scholar 

  34. Alghonaim, E.; Landolsi, M.A.; El-Maleh, A.: Improving BER performance of LDPC codes based on intermediate decoding results. In: 2007 IEEE International Conference on Signal Processing and Communications, pp. 1547–1550 (2007). https://doi.org/10.1109/ICSPC.2007.4728627

  35. Alghonaim, E.; El-Maleh, A.; Landolsi, M.A.: New technique for improving performance of LDPC codes in the presence of trapping sets. EURASIP J. Wirel. Commun. Networw. (2008). https://doi.org/10.1155/2008/362897

    Article  Google Scholar 

  36. Alghonaim, E.; El-Maleh, A.; Adnan Landolsi, M.: A platform for ldpc code design and performance evaluation. Arab J Sci Eng 35(2B), 136 (2010)

    Google Scholar 

  37. El-Maleh, A.H.; Adnan Landolsi, M.; AlGhoneim, E.A.: Window-constrained interconnect-efficient progressive edge growth LDPC codes. AEU-Int J Electron C 67(7), 588–594 (2013). https://doi.org/10.1016/j.aeue.2012.12.006

    Article  Google Scholar 

  38. Omar, T.; Abichar, Z.; Kamal, A.E.; Chang, J.M.; Alnuem, M.A.: Fault-tolerant small cells locations planning in 4G/5G heterogeneous wireless networks. IEEE Trans Veh Technol 66(6), 5269–5283 (2017). https://doi.org/10.1109/TVT.2016.2615325

    Article  Google Scholar 

  39. 3GPP Technical Specification, 5G NR Physical channels and modulation, 3GPP TS 38.211 version 15.2.0 Release 15, 2018-07

  40. Dahlman, E.; Parkvall, S.; Sköld, J.: 4G LTE/LTE-Advanced for Mobile Broadband. Academic Press Publications, Cambridge (2013)

    Google Scholar 

  41. 3GPP Technical Report, 5G, Study on channel model for frequencies from 0.5 to 100 GHz, 3GPP TR 38.901 version 14.3.0 Release 14, 2018-01

  42. ITU-R Recommendation, Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz, Recommendation ITU-R P.1411-6, 02/2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardhendu Shekhar Biswas.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author declares that there are no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, A.S., Sil, S., Bera, R. et al. Orthogonal Coded Spread Spectrum Digital Beamforming-Based 5G Receiver. Arab J Sci Eng 48, 5757–5769 (2023). https://doi.org/10.1007/s13369-022-07022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07022-x

Keywords

Navigation