Skip to main content

Advertisement

Log in

Bionic Design and Numerical Simulation of Rough-Breaking Tool for Attapulgite Clay

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Attapulgite has been widely used in food, chemical and building materials industries as a new mineral with a unique structure and complete application. Crushing is an essential part of the preliminary treatment of attapulgite. In general, the water content of newly excavated attapulgite is often as high as 44%. Therefore, when crushing the newly excavated attapulgite, the crusher will encounter sticking tools and agglomerating, which will lower crushing efficiency and lead to motor burning or other issues. To solve the above problems, the crusher cutter was improved by combining bionics and discrete element method in this paper, and the crushing process of attapulgite was simulated numerically. The results show that: (1) The numerical simulation results are in good agreement with the literature data; (2) bionic devices can increase the disturbance of concave soil particles and make them less likely to accumulate in the front of cutting tools; (3) the bionic tool designed with crocodile teeth has low rock breaking resistance and low energy consumption; the rock-breaking efficiency increases with teeth’ angle. The bionic tool can achieve the purpose of reducing viscosity and drag, and the optimized tool structure is simple and easy to realize. In addition, the introduction of bionics will help us to improve the shortcomings of traditional machinery and improve production efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Neaman, A.; Singer, A.: Possible use of the sacalum (yucatan) palygorskite as drilling muds. Appl. Clay Sci. 25(1–2), 121–124 (2004)

    Google Scholar 

  2. Yuan, Q.; Zhou, D.; Li, B.; et al.: Effect of mineral admixtures on the structural build-up of cement paste. Constr. Build. Mater. 160, 117–126 (2018)

    Google Scholar 

  3. Bao, S.; Liu, Q.; Rao, W.; et al.: Synthesis and characterization of calcium alginate-attapulgite composite capsules for long term asphalt self-healing. Constr. Build. Mater. 265(120), 779 (2020)

    Google Scholar 

  4. Rao, W.; Liu, Q.; Yu, X.; et al.: Efficient preparation and characterization of calcium alginate-attapulgite composite capsules for asphalt self-healing. Constr. Build. Mater. 299(123), 931 (2021)

    Google Scholar 

  5. Chai, M.; Zhang, H.; Zhang, J.; et al.: Effect of cement additives on unconfined compressive strength of warm and ice-rich frozen soil. Constr. Build. Mater. 149, 861–868 (2017)

    Google Scholar 

  6. Liu, P.; Zhang, L.: Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. Sep. Purif. Technol. 58(1), 32–39 (2007)

    Google Scholar 

  7. Ren, L.Q.; Tong, J.; Li, J.Q.; et al.: Swsoil and water: soil adhesion and biomimetics of soil-engaging components: a review. J. Agric. Eng. Res. 79(3), 239–263 (2001)

    Google Scholar 

  8. Ren, L.; Han, Z.; Li, J.; et al.: Effects of non-smooth characteristics on bionic bulldozer blades in resistance reduction against soil. J. Terramech. 39(4), 221–230 (2002)

    Google Scholar 

  9. Li, J.; Kou, B.; Liu, G.; et al.: Resistance reduction by bionic coupling of the earthworm lubrication function. Sci. China Technol. Sci. 53(11), 2989–2995 (2010)

    Google Scholar 

  10. Sun, J.; Wang, Y.; Ma, Y.; et al.: Dem simulation of bionic subsoilers (tillage depth> 40 cm) with drag reduction and lower soil disturbance characteristics. Adv. Eng. Softw. 119, 30–37 (2018)

    Google Scholar 

  11. Zhang, R.; Zhang, S.; Li, X.; et al.: Relationship between foot structure morphology and ostrich traveling ability on sand. In: International Bionic Engineering Conference(2011)

  12. Jq, L.I.; Gm, L.I.U.; Zou, M.; et al.: Study on adhesion characteristics of earthworms’ non-smooth surface. J. Agric. Sci. Technol. 9(6), 110 (2007)

    Google Scholar 

  13. Franca, L.; Lamine, E.; Cutting action of impregnated diamond segments: modelling and experimental validation. In: 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium, OnePetro (2010)

  14. Zhu, H.; Zhang, C.; Deng, J.; et al.: Characteristics of rock mechanics and PDC bit optimization of glutenite formation in the pearl river mouth basin oil fields. Sci. Iran. 20(4), 1133–1144 (2013)

    Google Scholar 

  15. Zhu, H.Y.; Deng, J.G.; Xie, Y.H.; et al.: Rock mechanics characteristic of complex formation and faster drilling techniques in western south China sea oilfields. Ocean Eng. 44, 33–45 (2012)

    Google Scholar 

  16. Moon, T.; Oh, J.: A study of optimal rock-cutting conditions for hard rock TBM using the discrete element method. Rock Mech. Rock Eng. 45(5), 837–849 (2012)

    Google Scholar 

  17. Delaney, G.; Morrison, R.; Sinnott, M.; et al.: Dem modelling of non-spherical particle breakage and flow in an industrial scale cone crusher. Min. Eng. 74, 112–122 (2015)

    Google Scholar 

  18. Cleary, P.; Sinnott, M.; Morrison, R.; et al.: Analysis of cone crusher performance with changes in material properties and operating conditions using dem. Min. Eng. 100, 49–70 (2017)

    Google Scholar 

  19. Ahmad, R.; Kassas, M.; Ahmed, C.B.; et al.: Application of mineral compounds for a high-voltage portable grounding system: an experimental study. Electronics 10(16), 2043 (2021)

    Google Scholar 

  20. Ahmad, R.; Khan, F.; Jamal, A.; et al.: Simulation and breakdown characteristics of china clay and silica sand for improved grounding system. In: 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), IEEE, pp 1–6(2020)

  21. Gong, Q.M.; Zhao, J.; Hefny, A.: Numerical simulation of rock fragmentation process induced by two tbm cutters and cutter spacing optimization. Tunnell. Undergr. Space Technol. 21(3-4) (2006)

  22. Cook, N.; Hood, M.; Tsai, F.: Observations of crack growth in hard rock loaded by an indenter. In: International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Elsevier, pp. 97–107(1984)

  23. Js, Liu; Cao, P.; Liu, J.; et al.: Influence of confining stress on fracture characteristics and cutting efficiency of TBM cutters conducted on soft and hard rock. J. Cent. South Univ. 22(5), 1947–1955 (2015)

    Google Scholar 

  24. Zhu, X.H.; Luo, Y.X.: Liu, W.: The rock breaking and ROP increase mechanisms for single-tooth torsional impact cutting using dem. Pet. Sci. 16(5), 1134–1147 (2019)

  25. Shelley, T.: Lubrication-worms show way to efficiently move-tom Shelley reports on an animal-inspired way to improve the efficiency of agricultural equipment. Eureka-Innov. Eng. Des. 24(1), 28–30 (2004)

    Google Scholar 

  26. Qian, R.L.Y.B.C.: Experimental study on reducing adhesion in coal hopper by surface electro-osmosis. Chin. J. Mech. Eng. 12(2), 1 (1999)

    Google Scholar 

  27. Erickson, G.M.; Gignac, P.M.; Steppan, S.J.; et al.: Insights into the ecology and evolutionary success of crocodilians revealed through bite-force and tooth-pressure experimentation. PLoS One 7(3), e31781 (2012)

    Google Scholar 

  28. Sally (2021) 11 facts about earthworms that will blow your mind. https://www.countryliving.com/uk/wildlife/countryside/a36968365/earthworms-facts/

  29. SciTechDaily (2021) New species of humongous prehistoric crocodile “river boss” discovered in australia. https://scitechdaily.com/new-species-of-humongous-prehistoric-crocodile- river-boss-discovered-in-australia/

  30. Council, C.E.: Code for Rock Tests of Hydroelectric and Water Conservancy Engineering (dl/t 5368-2007) (2007)

  31. Powrie, W.: Soil mechanics: Concepts and Applications. CRC Press (2018)

  32. Zhu, H.; Dang, Y.; Liu, Q.; et al.: Experimental and numerical simulation research of the physical and mechanical properties of attapulgite clay. Sci. Sinica Phys. Mech. Astron. 49(12), 124601 (2019)

    Google Scholar 

  33. Cundall, P.A.; Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Google Scholar 

  34. Gao, G.; Meguid, M.A.; Chouinard, L.E.: On the role of pre-existing discontinuities on the micromechanical behavior of confined rock samples: a numerical study. Acta Geotech. 15(12), 3483–3510 (2020)

    Google Scholar 

  35. Xu, G.; He, C.; Chen, Z.; et al.: Effects of the micro-structure and micro-parameters on the mechanical behaviour of transversely isotropic rock in brazilian tests. Acta Geotech. 13(4), 887–910 (2018)

    Google Scholar 

  36. Tian, W.L.; Yang, S.Q.; Huang, Y.H.; et al.: Mechanical behavior of granite with different grain sizes after high-temperature treatment by particle flow simulation. Rock Mech. Rock Eng. 53(4), 1791–1807 (2020)

    Google Scholar 

  37. Yin, T.; Zhang, S.; Li, X.; et al.: A numerical estimate method of dynamic fracture initiation toughness of rock under high temperature. Eng. Fract. Mech. 204, 87–102 (2018)

    Google Scholar 

  38. Zhang, R.; Zhao, C.; Yang, C.; et al.: A comprehensive study of single-flawed granite hydraulically fracturing with laboratory experiments and flat-jointed bonded particle modeling. Comput. Geotech. 140(104), 440 (2021)

    Google Scholar 

  39. Chong, Z.; Li, X.; Hou, P.; et al.: Numerical investigation of bedding plane parameters of transversely isotropic shale. Rock Mech. Rock Eng. 50(5), 1183–1204 (2017)

    Google Scholar 

  40. Itasca, P.: Version 5.0. Itasca Consulting Group Inc Minneapolis, United States (2014)

  41. Zhu, H.Y.; Dang, Y.K.; Wang, G.R.; et al.: Near-wellbore fracture initiation and propagation induced by drilling fluid invasion during solid fluidization mining of submarine nature gas hydrate sediments. Pet. Sci. 18(6), 1739–1752 (2021)

    Google Scholar 

  42. Chen, S.; Xia, Z.; Feng, F.; et al.: Numerical study on strength and failure characteristics of rock samples with different hole defects. Bull. Eng. Geol. Environ. 80(2), 1523–1540 (2021)

    Google Scholar 

  43. Na, Cho; Martin, C.; Sego, D.: A clumped particle model for rock. Int. J. Rock Mech. Min. Sci. 44(7), 997–1010 (2007)

    Google Scholar 

  44. Duan, K.; Kwok, C.; Ma, X.: Dem simulations of sandstone under true triaxial compressive tests. Acta Geotech. 12(3), 495–510 (2017)

    Google Scholar 

  45. Potyondy, D.O.; Cundall, P.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004)

    Google Scholar 

  46. Yang, S.; Huang, Y.: Experiment and particle flow simulation on crack coalescence behavior of sandstone specimens containing double holes and a single fissure. J. Basic Sci. Eng. 22(3), 584–597 (2014)

    Google Scholar 

  47. Innaurato, N.; Oggeri, C.; Oreste, P.P.; et al.: Experimental and numerical studies on rock breaking with TBM tools under high stress confinement. Rock Mech. Rock Eng. 40(5), 429 (2007)

    Google Scholar 

  48. Liu, H.; Kou, S.; Lindqvist, P.A.; et al.: Numerical simulation of the rock fragmentation process induced by indenters. Int. J. Rock Mech. Min. Sci. 39(4), 491–505 (2002)

    Google Scholar 

  49. Gong, Q.; Zhao, J.: Influence of rock brittleness on TBM penetration rate in Singapore granite. Tunn. Undergr. Space Technol. 22(3), 317–324 (2007)

    Google Scholar 

  50. Gong, Q.M.; Zhao, J.; Jiao, Y.Y.: Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters. Tunn. Undergr. Space Technol. 20(2), 183–191 (2005)

    Google Scholar 

  51. Liao, Z.Y.; Liang, Z.Z.; Tang, C.A.; et al.: Numerical simulation of rock fracture mechanism induced by a drill bit under combined dynamic and static loading. Yantu Lixue/Rock Soil Mech. 34(9), 2682-2689+2698 (2013)

    Google Scholar 

  52. Tan, Q.; Yc, Z.H.A.N.G.; Ym, X.I.A.; et al.: Experimental research of TBM disc cutter penetrate saturated rock. J. Zhejiang Univ. (Eng. Sci.) 51(5), 914–921 (2017)

    Google Scholar 

  53. Evans, I.; Pomeroy, C.D.: The Strength, Fracture and Workability of Coal: A Monograph on Basic Work on Coal Winning Carried Out by the Mining Research Establishment. Elsevier, National Coal Board (2013)

  54. Roxborough, F.F.; Phillips, H.R.: Rock excavation by disc cutter. In: International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Elsevier, pp. 361–366 (1975)

  55. Yuan, J.; Jiang, M.; Liao, Y.; et al.: Discrete element method analysis of rock failure mechanism considering scale effects of tunnel boring machine cutter. Tongji Daxue Xuebao/J. Tongji Univ. 45(10), 1437–1445 (2017)

    Google Scholar 

  56. Zhang, R.; Zhou, G.; Chen, G.; et al.: Research on the nonlinear mechanical model of cohesive soil based on distinct element method. Adv. Sci. Lett. 4(4–5), 1500–1508 (2011)

    Google Scholar 

  57. Richard, T.; Detournay, E.; Drescher, A.; et al.: The scratch test as a means to measure strength of sedimentary rocks. In: SPE/ISRM Rock Mechanics in Petroleum Engineering, OnePetro (1998)

  58. Entacher, M.; Schuller, E.; Galler, R.: Rock failure and crack propagation beneath disc cutters. Rock Mech. Rock Eng. 48(4), 1559–1572 (2015)

    Google Scholar 

  59. Jiang, M.; Liao, Y.; Wang, H.; et al.: Distinct element method analysis of jointed rock fragmentation induced by TBM cutting. Eur. J. Environ. Civil Eng. 22(sup1), s79–s98 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. U19A2097) and Installation Engineering Co., Ltd. of CSCEC 7th Division. The authors also sincerely thank the editors and the reviewers for their efforts in improving this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, Y., Zhu, H., Yang, Z. et al. Bionic Design and Numerical Simulation of Rough-Breaking Tool for Attapulgite Clay. Arab J Sci Eng 48, 2747–2767 (2023). https://doi.org/10.1007/s13369-022-06999-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06999-9

Keywords

Navigation