Skip to main content
Log in

Fabrication of Vacuum Evaporated (Cu1-xAgx)2ZnSnSe4 Thin-film Photovoltaic Devices and its Photoconversion Efficiency

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, Ag-doped Cu2ZnSnSe4 (CZTSe) thin films were deposited on FTO substrate by thermal evaporation method. The structural, morphological, optical and electrical properties of the (Cu1-xAgx)2ZnSnSe4 thin films were analyzed. The XRD analysis shows tetragonal crystal structure for CZTSe thin films, and the peak shift reveals the incorporation of the Ag into CZTSe crystal structure. Raman spectra show the presence of binary phases. SEM images show irregular shaped particles, and EDS spectra show non-stoichiometric nature. The optical spectra reveal good optical absorption in the visible region, and it is increased for Ag-doped films. Hall effect analysis shows p-type conductivity for CZTSe, whereas Ag-doped CZTSe sample provokes n-type conductivity. The result is also supported by the Mott–Schottky plots. The film x = 0.5 Ag doping concentration exhibits higher band bending in the dark which is essential for increasing Voc of the photoelectrochemical cell. The carrier concentration is found to be 1018 –1020 cm−3 for (Cu1-xAgx)2ZnSnSe4 thin films. The photoelectrochemical performance of the films was analyzed. Among the films, x = 0.5 Ag-doped film shows 3.02% photoconversion efficiency (PCE). The solar cells Glass/FTO/(Cu1−xAgx)2ZnSnSe4/Cu2ZnSnSe4/Ag were fabricated, and their PCE has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Su, Z.; Tan, J.M.; Li, X.; Zeng, X.; Batabyal, S.K.; Wong, L.H.: Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency. Adv. Energy Mater. 5, 1500682 (2015)

    Article  Google Scholar 

  2. Sun, K.; Su, Z.; Yan, C.; Liu, F.;Cui, H.; Jiang, L.; Shen, Y.; Hao, X.; Liu Y. (2014) Flexible Cu2ZnSnS4 solar cells based on successive ionic layer adsorption and reaction method RSC Adv, 4, 17703–17708

  3. Sawant, J.P.; Pathan, H.M.; Kale, R.B.: Photoelectrochemical properties of spray deposited Cu2ZnSnS4 photoelectrode: enhancement in photoconversion efficiency with film thickness. ES Energy Environ. 10, 73–79 (2020)

    Google Scholar 

  4. Yuan, Z.K.; Chen, S.; Xiang, H.; Gong, X.G.; Walsh, A.; Park, J.S.; Repins, I.; Wei, S.H.: Engineering solar cell absorbers by exploring the band alignment and defect disparity: the case of Cu-and Ag-based kesterite compounds. Adv. Func. Mater. 25, 6733–6743 (2015)

    Article  Google Scholar 

  5. Fu, J.; Tian, Q.; Zhou, Z.; Kou, D.; Meng, Y.; Zhou, W.; Wu, S.: Improving the performance of solution-processed Cu2ZnSn(S, Se)4 photovoltaic materials by Cd2+ substitution. Chem. Mater. 28, 5821–5828 (2016)

    Article  Google Scholar 

  6. Qi, Y.; Tian, Q.; Meng, Y.; Kou, D.; Zhou, Z.; Zhou, W.; Wu, S.: Elemental precursor solution processed (Cu1–xAgx)2ZnSn (S, Se)4 photovoltaic devices with over 10% efficiency. ACS Appl. Mater. Interfaces 9, 21243–21250 (2017)

    Article  Google Scholar 

  7. Gershon, T.; Sardashti, K.; Lee, Y.S.; Gunawan, O.; Singh, S.; Bishop, D.; Kummel, A.C.; Haight, R.: Compositional effects in Ag2ZnSnSe4 thin films and photovoltaic devices. Acta Mater. 126, 383–388 (2017)

    Article  Google Scholar 

  8. Gong, W.; Tabata, T.; Takei, K.; Morihama, M.; Maeda, T.; Wada, T.: Crystallographic and optical properties of (Cu, Ag)2ZnSnS4 and (Cu, Ag)2ZnSnSe4 solid solutions. Phys. Status Solidi C 12, 700–703 (2015)

    Article  Google Scholar 

  9. Kumar, J.; Ingole, S.: Structural and optical properties of (Cu1–xAgx)2ZnSn (S, Se)4 thin films synthesised via solution route. J. Alloy. Compd. 727, 1089–1094 (2017)

    Article  Google Scholar 

  10. Gershon, T.; Lee, Y.S.; Antunez, P.; Mankad, R.; Singh, S.; Bishop, D.; Gunawan, O.; Hopstaken, M.; Haight, R.: Photovoltaic materials and devices based on the alloyed kesterite absorber (AgxCu1–x)2ZnSnSe4. Adv. Energy Mater 6, 1502468 (2016)

    Article  Google Scholar 

  11. Ma, C.; Guo, H.; Zhang, K.; Yuan, N.; Ding, J.: Fabrication of p-type kesterite Ag2ZnSnS4 thin films with a high hole mobility. Mater. Lett. 186, 390–393 (2017)

    Article  Google Scholar 

  12. Guo, H.; Ma, C.; Zhang, K.; Jia, X.; Li, Y.; Yuan, N.; Ding, J.: The fabrication of Cd-free Cu2ZnSnS4-Ag2ZnSnS4 heterojunction photovoltaic devices. Sol. Energy Mater. Sol. Cells 178, 146–153 (2018)

    Article  Google Scholar 

  13. Ma, C.; Guo, H.; Zhang, K.; Li, Y.; Yuan, N.; Ding, J.: The preparation of Ag2ZnSnS4 homojunction solar cells. Mater. Lett. 207, 209–212 (2017)

    Article  Google Scholar 

  14. Tyona, M.D.; Osuji, R.U.; Lokhande, C.D.; Ezema, F.I.: Photovoltaic properties of aluminum doped zinc oxide electrodes based on variation of aluminum impurities in the semiconductor. J. Mater. Phys. Chem. 6, 9–16 (2018)

    Google Scholar 

  15. Patil, S.S.; Mane, R.M.; Mali, S.S.; Hong, C.K.; Bhosale, P.N.: Facile designing and assessment of photovoltaic performance of hydrothermally grown kesterite Cu2ZnSnS4 thin films: influence of deposition time. Sol. Energy 201, 102–115 (2020)

    Article  Google Scholar 

  16. Lee, P.Y.; Chang, S.P.; Chang, S.J.: Photoelectrochemical characterization of n-type and p-type thin-film nanocrystalline Cu2ZnSnSe4 photocathodes. J. Environ. Chem. Eng. 3, 297–303 (2015)

    Article  Google Scholar 

  17. Chavan, G.T.; Shinde, N.M.; Sabah, F.A.; Patil, S.S.; Sikora, A.; Prakshale, V.M.; Kamble, S.S.; Chaure, N.B.; Deshmukh, L.P.; Kim, A.; Jeon, C.W.: Chemical synthesis of Cd1-x-yZnxCuySzSe1-z composite thin films for photoelectrochemical solar cell. Appl. Surf. Sci. 574, 151581 (2022)

    Article  Google Scholar 

  18. Patil, S.S.; Khot, K.V.; Mali, S.S.; Hong, C.K.; Bhosale, P.N.: Investigating the role of selenium ion concentration on optoelectronic properties of the Cu2ZnSn(S1-xSex)4 thin films. Ind. Eng. Chem. Res. 59, 10868–10881 (2020)

    Article  Google Scholar 

  19. Suryawanshi, M.P.; Shin, S.W.; Ghorpade, U.V.; Gurav, K.V.; Hong, C.W.; Agawane, G.L.; Vanalakar, S.A.; Moon, J.H.; Yun, J.H.; Patil, P.S.; Kim, P.S.; Moholkar A.V. (2014) Improved photoelectrochemical performance of Cu2ZnSnS4 (CZTS) thin films prepared using modified successive ionic layer adsorption and reaction (SILAR) sequence, Electrochimica Acta, 136–145 (2014)

  20. Yeh, L.Y.; Cheng, K.W.: Preparation of the Ag–Zn–Sn–S quaternary photoelectrodes using chemical bath deposition for photoelectrochemical applications. Thin Solid Films 558, 289–293 (2014)

    Article  Google Scholar 

  21. Cheng, K.W.: Photoelectrochemical performances of kesterite Ag2ZnSnSe4 photoelectrodes in the salt-water and water solutions. J. Taiwan Inst. Chem. Eng. 75, 199–208 (2017)

    Article  Google Scholar 

  22. Li, G.; Zhu, X.; Tang, X.; Song, W.; Yang, Z.; Dai, J.; Sun, Y.; Pan, X.; Dai, S.: Doping and annealing effects on ZnO: Cd thin films by sol–gel method. J. Alloy. Compd. 509, 4816–4823 (2011)

    Article  Google Scholar 

  23. Bedir, M.; Tunç, A.; Öztas, M.: Investigation of the characteristics of the boron doped MnO films deposited by spray pyrolysis method. Acta Phys. Pol., A 129, 1159–1164 (2016)

    Article  Google Scholar 

  24. El Radaf, I.M.: Synthesis and characterizations of p-type kesterite Ag2ZnSnS4 thin films deposited by spray pyrolysis. J. Electron. Mater. 49, 3591–3598 (2020)

    Article  Google Scholar 

  25. Khedmi, N.; Ben Rabeh, M.; Kanzari, M.: Structural morphological and optical properties of SnSb2S4 thin films grown by vacuum evaporation method. J. Mater. Sci. Technol. 30, 1006–1011 (2014)

    Article  Google Scholar 

  26. Sadanand, P.K.; Singh, P.; Lohia, D.K.; Dwivedi, F.A.; Alharthi, A.; El-Marghany, A.; Al-Zaqri, N.: Development and characterization for solar photovoltaic cell based on Cu2ZnSn(S0.02Se0.08)4 thin film. Nanosci. Nanotech. Lett. 12, 1–11 (2020)

    Article  Google Scholar 

  27. Najim, J.A.; Rozaiq, J.M.: Effect Cd doping on the structural and optical properties of ZnO thin films. Int. Lett. Chem., Phys. Astron 15, 137–150 (2013)

    Article  Google Scholar 

  28. Shiyani, T.; Raval, D.; Patel, M.; Mukhopadhyay, I.; Ray, A.: Effect of initial bath condition and post-annealing on co-electrodeposition of Cu2ZnSnS4. Mater. Chem. Phys. 171, 63–72 (2016)

    Article  Google Scholar 

  29. Lee, P.Y.; Chang, S.P.; Kuo, P.J.; Hsu, E.H.; Chang, S.J.; Shei, S.C.: Sensing performance of EGFET pH sensors with CZTSe nanoparticles fabricated on glass substrates. Int. J. Electrochem. Sci. 8, 3866–3875 (2013)

    Google Scholar 

  30. Ge, J.; Chu, J.; Jiang, J.; Yan, Y.; Yang, P.: The interfacial reaction at ITO back contact in kesterite CZTSSe bifacial solar cells. ACS Sustain. Chem. Eng. 3, 3043–3052 (2015)

    Article  Google Scholar 

  31. Prabhu, M.; Kamalakkannan, K.; Soundararajan, N.; Ramachandran, K.: Fabrication and characterization of ZnSe thin films based low-cost dye sensitized solar cells. J. Mater. Sci. Mater. Electron. 26, 3963–3969 (2015)

    Article  Google Scholar 

  32. Zhang, Y.; Sun, Y.; Wang, H.; Yan, H.: A facile non-vacuum-based Cu2ZnSnSe4 superstrate solar cell with 2.44% device efficiency. Phys. Status Solidi A 213, 1324–1328 (2016)

    Article  Google Scholar 

  33. Jiang, Y.; Yao, B.; Jia, J.; Ding, Z.; Deng, R.; Liu, D.; Sui, Y.; Wang, H.; Li, Y.: Structural, electrical, and optical properties of Ag2ZnSnSe4 for photodetection application. J. Appl. Phys 125, 025703 (2019)

    Article  Google Scholar 

  34. Nagapure, D.R.; Patil, R.M.; Chandra, G.H.; Sunil, M.A.; Subbaiah, Y.V.; Gupta, M.; Rao, R.P.: Growth and characterization of Ge-substituted Cu2ZnSnSe4 thin films. Mater. Sci. Semicond. Process. 87, 77–85 (2018)

    Article  Google Scholar 

  35. Zheng, H.; Wei, A.; Xiong, H.: influence of deposition parameters on the morphology, structural and optical properties of Cu2ZnSnS4 thin films grown by solvothermal method. Chalcogenide Lett. 15, 327–337 (2018)

    Google Scholar 

  36. Chalapathi, U.; Poornaprakash, B.; Park, S.H.: Effect of substrate surface on the growth of spray deposited Cu2ZnSnS4 thin films. Chalcogenide Lett. 15, 475–481 (2018)

    Google Scholar 

  37. Chauhan, R.; Srivastava, A.K.; Tripathi, A.; Srivastava, K.K.: Photo-induced optical changes in GexAs40Se60–x thin films. Prog. Nat. Sci.: Mater. Int. 20, 54–60 (2010)

    Article  Google Scholar 

  38. Ahn, S.; Jung, S.; Gwak, J.; Cho, A.; Shin, K.; Yoon, K.; Park, D.; Cheong, H.; Yun, J.H.: Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: on the discrepancies of reported band gap values. Appl. Phys. Lett. 97, 021905 (2010)

    Article  Google Scholar 

  39. Sun, L.; He, J.; Kong, H.; Yue, F.; Yang, P.; Chu, J.: Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by pulsed laser deposition method. Sol. Energy Mater. Sol. Cells 95, 2907–2913 (2011)

    Article  Google Scholar 

  40. Makori, N.E.; Amatalo, I.A.; Karimi, P.M.; Njoroge, W.K.: Optical and electrical properties of SnSe thin films for solar cell applications. Am. J. Condensed Matter Phys. 4, 87–90 (2014)

    Google Scholar 

  41. Shi, W.; Gao, M.; Wei, J.; Gao, J.; Fan, C.; Ashalley, E.; Li, H.; Wang, Z.: Tin selenide (SnSe): growth, properties, and applications. Adv. Sci. 5, 1700602 (2018)

    Article  Google Scholar 

  42. Tyona, M.D.; Jambure, S.B.; Osuji, R.U.; Maaza, M.; Lokhande, C.D.; Ezema, F.I.: The effect of indium doping on photovoltaic properties of chemically synthesized zinc oxide thin-film electrodes. J. Solid State Electrochem. 24, 313–320 (2020)

    Article  Google Scholar 

  43. Wu, Y.; Sui, Y.; He, W.; Zeng, F.; Wang, Z.; Wang, F.; Yao, B.; Yang, L.: Substitution of Ag for Cu in Cu2ZnSn(S, Se)4: toward wide band gap absorbers with low antisite defects for thin film solar cells. Nanomaterials 10, 96 (2020)

    Article  Google Scholar 

  44. Liang, X.; Wang, P.; Huang, B.; Zhang, Q.; Wang, Z.; Liu, Y.; Zheng, Z.; Qin, X.; Zhang, X.; Dai, Y.: Effects of Ag incorporation on the band structures and conductivity types of (Cu1-xAgx)2ZnSnS4 solid solutions. ChemPhotoChem. 2, 811–817 (2018)

    Article  Google Scholar 

  45. Kuo, D.H.; Hsu, J.T.: Development of 3.7% efficient Cu2ZnSnSe4 solar cells by selenizing Cu-Zn-Sn films deposited by dc sputtering on TiN-protected Mo/glass substrates. J. Elect. Mater. 43, 2694–2701 (2014)

    Article  Google Scholar 

  46. Gupta, G.K.; Garg, A.; Dixit, A.: Electrical and impedance spectroscopy analysis of sol-gel derived spin coated Cu2ZnSnS4 solar cell. J. Appl. Phys. 123, 013101 (2018)

    Article  Google Scholar 

  47. Asghar, M.; Mahmood, K.; Malik, F.; Hasan, M.A.: Growth and interface properties of Au Schottky contact on ZnO grown by molecular beam epitaxy. J. Phys: Conf. Ser. 439, 012031 (2013)

    Google Scholar 

  48. Wang, X.; Xie, J.; Li, C.M.: Architecting smart “umbrella” Bi2S3/rGO-modified TiO 2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light. J. Mater. Chem. A 3, 1235–1242 (2015)

    Article  Google Scholar 

  49. Yang, Y.; Han, J.; Ning, X.; Cao, W.; Xu, W.; Guo, L.: Controllable morphology and conductivity of electrodeposited Cu2O thin film: effect of surfactants. ACS Appl. Mater. Interfaces 6, 22534–22543 (2014)

    Article  Google Scholar 

  50. Rokade, A.; Rondiya, S.; Sharma, V.; Prasad, M.; Pathan, H.; Jadkar, S.: Electrochemical synthesis of 1D ZnO nanoarchitectures and their role in efficient photoelectrochemical splitting of water. J. Solid State Electrochem. 21, 2639–2648 (2017)

    Article  Google Scholar 

  51. Jiang, Y.; Yao, B.; Jia, J.; Ding, Z.; Deng, R.; Liu, D.; Li, Y.: Structural, electrical, and optical properties of Ag2ZnSnSe4 for photodetection application. J. Appl. Phys. 125, 025703 (2019)

    Article  Google Scholar 

  52. Rajpure, K.Y.; Bhosal, C.H.: A study of substrate variation effects on the properties of n-Sb2S3 thin film/polyiodide/C photoelectrochemical solar cells. Mater. Chem. Phys. 64, 14–19 (2000)

    Article  Google Scholar 

  53. Sawant, R.R.; Shinde, S.S.; Bhosale, C.H.; Rajpure, K.Y.: Influence of substrates on photoelectrochemical performance of sprayed n-CdIn2S4 electrodes. Sol. Energy 84, 1208–1215 (2010)

    Article  Google Scholar 

  54. Choe, H.B.; Lee, H.S.; Ismail, M.A.; Hussin, M.W.: Evaluation of electrochemical ımpedance properties of anticorrosionfilms by arc thermal metal spraying method. Int J. Electrochem Sci. 10, 9775–9789 (2015)

    Google Scholar 

  55. Ahila, M.; Subramanian, E.; Padiyan, D.P.: Influence of annealing on phase transformation and specific capacitance enhancement in Bi2O3. J. Electroanal. Chem. 805, 146–158 (2017)

    Article  Google Scholar 

  56. Liu, C.; Bi, Q.; Leyland, A.; Matthews, A.: An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behavior. Corros. Sci. 45, 1243–1256 (2003)

    Article  Google Scholar 

  57. Wu, Q.; Xue, C.; Li, Y.; Zhou, P.; Liu, W.; Zhu, J.; Dai, S.; Zhu, C.; Yang, S.: Kesterite Cu2ZnSnS4 as a low-cost inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Appl. Mater. Interfaces 7, 28466–28473 (2015)

    Article  Google Scholar 

  58. Sharif, N.F.M.; Kadir, M.Z.A.A.; Shafie, S.; Rashid, S.A.; Hasan, W.Z.W.; Shaban, S.: Charge transport and electron recombination suppression in dye-sensitizedsolar cells using graphene quantum dots. Results Phys. 13, 102171 (2019)

    Article  Google Scholar 

  59. Gudage, Y.G.; Deshpande, N.G.; Sagade, A.A.; Sharma, R.P.; Pawar, S.M.; Bhosale, C.H.: Photoelectrochemical (PEC) studies on CdSe thin films electrodeposited from non-aqueous bath on different substrates. Bull. Mater. Sci. 30, 321–327 (2007)

    Article  Google Scholar 

  60. Patil, N.M.; Nilange, S.G.; Yadav, A.A.: Photoelectrochemical performance of spray-deposited Fe-doped ZnS0.2Se0.8 thin films. Sol. Energy 191, 1–6 (2019)

    Article  Google Scholar 

  61. Patil, S.S.; Khot, K.V.; Mane, R.M.; Bhosale, P.N.: Novel hydrothermal route for synthesis of photoactive Cu2ZnSn(S, Se)4 nanocrystalline thin film: efficient photovoltaic performance. J. Mater. Sci.: Mater. Electron. 31, 5441–5451 (2020)

    Google Scholar 

  62. Gautam, G.S.; Senftle, T.P.; Carter, E.A.: Understanding the effects of Cd and Ag doping in Cu2ZnSnS4 solar cells. Chem. Mater. 30, 4543–4555 (2018)

    Article  Google Scholar 

  63. Gezgin, S.Y.; Kılıç, H.Ş: The electrical characteristics of ITO/CZTS/ZnO/Al and ITO/ZnO/CZTS/Al heterojunction diodes. Optik 182, 356–371 (2019)

    Article  Google Scholar 

  64. Moriya, K.; Tanaka, K.; Uchiki, H.: Cu2ZnSnS4 thin films annealed in H2S atmosphere for solar cell absorber prepared by pulsed laser deposition. Jpn. J. Appl. Phys. 47, 602–604 (2008)

    Article  Google Scholar 

  65. Muhunthan, N.; Singh, O. P.; Thakur, M. K.; Karthikeyan, P.; Singh, D.; Saravanan, M.; Singh V. N.: Interfacial properties of CZTS thin film solar cell, J. Solar Energy. 2014: 476123

Download references

Acknowledgements

The author J. Henry acknowledges his sincere thanks to the University Grants Commission (UGC), New Delhi, India, for providing financial support through Basic Scientific Research (BSR). The authors are thankful to the DST-FIST, UGC-SAP and RUSA-MHRD, New Delhi, for providing the financial support to the Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mohanraj.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henry, J., Nagarajan, S., Sivakumar, G. et al. Fabrication of Vacuum Evaporated (Cu1-xAgx)2ZnSnSe4 Thin-film Photovoltaic Devices and its Photoconversion Efficiency. Arab J Sci Eng 48, 291–309 (2023). https://doi.org/10.1007/s13369-022-06982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06982-4

Keywords

Navigation