Skip to main content

Advertisement

Log in

Zirconia-Based Nanomaterials for Alternative Energy Application: Concept of Research in Smart Laboratory

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The engineering of doped zirconia nanoparticles (NPs) for energy application is realized in concept Research Smart Laboratory. To improve nanomaterials’ engineering, correlations of “salt concentration—powder dispersity” and “calcined temperature—particle’s sizes” were built. The correlation of “materials structure—materials functionality” is made. The technology forming ceramics with varying grain sizes and densities under the same thermodynamic conditions (1350 °C) from NPs with different sizes is developed. The impedance spectroscopy with the distribution of relaxation time analysis is used for ionic conductivity ceramic investigation in range 240–900 °C. The activation energies of the grain and grain boundary oxygen diffusion are calculated. It was shown that the energy activation of bulk oxygen diffusion does not depend on ceramic grain size (Ea = 0.9 eV). The energies activation of grain boundary oxygen diffusion estimated in the framework of the bricklayer model show a weak growth with the rising of ceramic grains sizes. The values of the volume activation energy are close to the grain-boundary activation energy for ceramics obtained from nanoparticles smaller than 18 nm. It was found that the grain boundary space contains two types of elements with different geometries. The size of NPs used for ceramic determines the size of grain boundaries elements. It was shown that the density of sintered ceramic has a more substantial effect on its electrophysical properties than grain size. The NPs sizes of 18–24 nm are optimal for forming pressed powder compacts and sintered ceramics with high density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CPE:

Constant phase element

C g, C gb1, C gb2 :

Capacity of grain and grain boundary spaces

DRS:

Distribution of relaxation time analysis

E a :

Energy activation

gb1, gb2:

Grain boundary spaces

NPs:

Nanoparticles

R :

Resistor

S sa :

Specific surface area

S msa :

External and mesoporous specific surface area

SEM:

Scanning electron microscopy

SOFC:

Solid oxide fuel cell

T cal :

Calcined temperature

U max :

Maximum of voltage

References

  1. Global Energy Transformation: A roadmap to 2050, International Renewable Energy Agency, Abu Dhabi. www.irena.org/publications (2019).

  2. Salameh, Z.: Renewable Energy System Design. Academic Press, San Diego (2014) https://doi.org/10.1016/B978-0-12-374991-8.00001-5

    Book  Google Scholar 

  3. Hussan, S.; Yanping, L.: Review of solid oxide fuel cell materials: cathode, anode and electrolyte. Energy Trans. 4, 113–126 (2020). https://doi.org/10.1007/s41825-020-00029-8

    Article  Google Scholar 

  4. Zeng, J.; Xu, Y.; Yu, J.; Zhang, X., et al.: Compact yttria-stabilized zirconia based total NOx sensor with a dual functional Co3O4/NiO sensing electrode. ACS Sens. 4, 2150–2155 (2019). https://doi.org/10.1021/acssensors.9b00981

    Article  Google Scholar 

  5. Shylo, A.; Doroshkevich, A.; Lyubchyk, A.; Bacherikov, Yu., et al.: Electrophysical properties of hydrated porous dispersed system based on zirconia nanopowders. Appl. Nanosci. 10, 4395–4402 (2020). https://doi.org/10.1007/s13204-020-01471-2

    Article  Google Scholar 

  6. Precious-Ayanwale, A.; Donohué-Cornejo, A.; Cuevas-González, J.C.; Espinosa-Cristóbal, L.F., et al.: Review of the synthesis, characterization and application of zirconia mixed metal oxide nanoparticles. Int. J. Res. Granthaalayah. 6, 136–145 (2018). https://doi.org/10.5281/zenodo.1403844

    Article  Google Scholar 

  7. Kogut, I.; Wollbrink, A.; Wulfmeier, H.; El Azzouzi, F.-E., et al.: Linking the electrical conductivity and non-stoichiometry of thin film Ce1−xZrxO2−δ by a resonant nanobalance approach. Materials (Basel). 14(4), 748 (2021). https://doi.org/10.3390/ma14040748

    Article  Google Scholar 

  8. Stub, S.; Vollestad, E.; Norby, T.: Protonic surface conduction controlled by space charge of intersecting grain boundaries in porous ceramics. J. Mater. Chem. 6, 8265–8827 (2018). https://doi.org/10.1039/c7ta11088j

    Article  Google Scholar 

  9. Novoselov, I.; Karengin, A.; Shamanin, I.; Alyukov, E.; Gusev, A.: Plasmachemical synthesis of nanopowders of yttria and zirconia from dispersed water-salt-organic mixtures. AIP Conf. Proc. 1938, 020010 (2018). https://doi.org/10.1063/1.5027217

    Article  Google Scholar 

  10. Vasylkiv, O.; Sakka, Y.: Synthesis and sintering of zirconia nano-powder by non-isothermal decomposition from hydroxide. J. Ceram. Soc. JAPAN 109, 500–505 (2001). https://doi.org/10.2109/jcersj.109.1270_500

    Article  Google Scholar 

  11. Tsuzuki, T.: Mechanochemical synthesis of metal oxide nanoparticles. Commun. Chem. 4(143), 1–11 (2021). https://doi.org/10.1038/s42004-021-00582-3

    Article  Google Scholar 

  12. Dahiya, M.S.; Tomer, U.K.; Duhan, S.: Metal–ferrite nanocomposites for targeted drug delivery. In: Asiri, A.M.; Inamudin, D.; Mohammad, A. (Eds.) Applications of nanocomposite materials in drug delivery, pp. 737–760. Woodhead Publishing, Berlin (2018). https://doi.org/10.1016/B978-0-12-813741-3.00032-7

    Chapter  Google Scholar 

  13. Zirconia. Tosoh corporation, Tokyo. https://www.rbhltd.com/wp-content/uploads/2019/05/Tosoh-Zirconia-Brochure.pdf (2019)

  14. Leib, E.W.; Pasquarelli, R.M.; Blankenburg, M.; Muller, M.; Schreyer, A., et al.: High-temperature stable zirconia particles doped with yttrium, lanthanum, and gadolinium. Part. Part. Syst. Charact. 33, 645–655 (2016). https://doi.org/10.1002/ppsc.201600069

    Article  Google Scholar 

  15. Charitidis, C.A.; Georgiou, P.; Koklioti, M.A.: Manufacturing nanomaterials: from research to industry. Manuf. Rev. 1(11), 1–19 (2014). https://doi.org/10.1051/mfreview/2014009

    Article  Google Scholar 

  16. Phan, H.T.; Haes, A.J.: What does nanoparticle stability mean? J. Phys. Chem. C Nanometer Interfaces 123(27), 16495–16507 (2019). https://doi.org/10.1021/acs.jpcc.9b00913

    Article  Google Scholar 

  17. Jeong, Y.-S.; Chin, S.H.: Synthesis and characterization of high surface area of Zirconia: effect of pH. Korean Chem. Eng. Res. 57, 133–141 (2019). https://doi.org/10.9713/kcer.2019.57.1.133

    Article  Google Scholar 

  18. Huang, Z.; Han, W.; Feng, Z.; Qi, J.; Wu, D., et al.: The effects of precipitants on coprecipitation synthesis of yttria-stabilized zirconia nanocrystalline powders. J. Sol Gel Sci. Technol. 90, 359–368 (2019). https://doi.org/10.1007/s10971-019-04947-y

    Article  Google Scholar 

  19. Jang, W.; Yun, J.; Ludwig, L.; Jang, S.G.; Bae, J.Y., et al.: Comparative catalytic properties of supported and encapsulated gold nanoparticles in homocoupling reactions. Front. Chem. 8(834), 1–9 (2020). https://doi.org/10.3389/fchem.2020.00834

    Article  Google Scholar 

  20. León, B.; Albano, M.P.; Stábile, F.M.; Garrido, L.B.: Processing of concentrated aqueous zirconia-bioglass slips by slip casting. Ceramics-Silikáty 61(2), 91–98 (2017). https://doi.org/10.13168/cs.2017.0002

    Article  Google Scholar 

  21. Kim, H.J.; Kim, M.; Neoh, K.C., et al.: Slurry spin coating of thin film yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolytes for solid oxide fuel cells. J. Power Sources 327, 401–407 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.080

    Article  Google Scholar 

  22. Obal, K.; Wyrwa, J.; Kruk, A.; Dziubaniuk, M., et al.: Microstructure and electrical conductivity of 3Y-TZP/Al2O3 composites. Process. Appl. Ceram. 15, 19–31 (2021). https://doi.org/10.2298/PAC21010190

    Article  Google Scholar 

  23. Mahato, N.; Banerjee, A.; Gupta, A.; Omar, S.; Balani, K.: Progress in material selection for solid oxide fuel cell technology: a review. Prog. Mater. Sci. 72, 141–337 (2015). https://doi.org/10.1016/j.pmatsci.2015.01.001

    Article  Google Scholar 

  24. Daza, P.C.C.; Meneses, R.A.M.; Ferreira, J.L.A.: Influence of microstructural characteristics on ionic conductivity of ceria based ceramic solid electrolytes. Ceram. Int. 44, 2138–2145 (2018). https://doi.org/10.1016/j.ceramint.2017.10.166

    Article  Google Scholar 

  25. Xue, Q.; Huang, X.; Zhang, J.; Zhang, H.; Feng, Z.: Grain boundary segregation and its influences on ionic conduction properties of scandia doped zirconia electrolytes. J. Rare Earth 37, 645–651 (2019). https://doi.org/10.1016/j.jre.2018.11.006

    Article  Google Scholar 

  26. Cheikh, A.; Madani, A.; Touati, A.; Boussetta, H.; Monty, C.: Ionic conductivity of zirconia based ceramics from single crystals to nanostructured polycrystals. J. Eur. Ceram. Soc. 21, 1837–1841 (2001). https://doi.org/10.1016/S0955-2219(01)00126-1

    Article  Google Scholar 

  27. Priya, S.D.; Selvakumar, A.I.; Nesaraj, A.S.: Overview on ceramic and nanostructured materials for solid oxide fuel cells (SOFCs) working at different temperatures. J. Electrochem. Sci. Tech. 11, 99–116 (2020). https://doi.org/10.33961/jecst.2019.00612

    Article  Google Scholar 

  28. Arena, A.; Prete, F.; Rambaldi, E.; Bignozzi, M.C.; Monaco, C., et al.: Nanostructured zirconia-based ceramics and composites in dentistry: a state-of-the-art review. Nanomaterials (Basel). 10(9), 1393 (2019). https://doi.org/10.3390/nano9101393

    Article  Google Scholar 

  29. Tao, J.; Dong, A.; Wang, J.: The influence of microstructure and grain boundary on the electrical properties of scandia stabilized zirconia. Mater. Trans. 54, 825–832 (2013). https://doi.org/10.2320/matertrans.M2012385

    Article  Google Scholar 

  30. Durá, O.J.; López de laTorre, M.A.; Vázquez, L., et al.: Ionic conductivity of nanocrystalline yttria-stabilized zirconia: grain boundary and size effects. Phys. Rev. B. 81, 184301 (2010). https://doi.org/10.1103/PhysRevB.81.184301

    Article  Google Scholar 

  31. Vikrant, K.S.N.; García, R.E.: Charged grain boundary transitions in ionic ceramics for energy applications. npj Comput. Mater. 5, 24 (2019). https://doi.org/10.1038/s41524-019-0159-2

    Article  Google Scholar 

  32. Hwang, J.H.; Mclachlan, D.S.; Mason, T.O.: Brick layer model analysis of nanoscale-to-microscale cerium dioxide. J. Electroceram. 3, 7–16 (1999). https://doi.org/10.1023/A:1009998114205

    Article  Google Scholar 

  33. Maca, K.; Trunek, M.: Compaction and pressureless sintering of zirconia nanoparticles. J. Am. Ceram. Soc. 90, 2735–2740 (2007). https://doi.org/10.1111/j.1551-2916.2007.01781.x

    Article  Google Scholar 

  34. Abdullah, B.J.; Jiang, Q.; Omar, M.S.: Effects of size on mass density and its influence on mechanical and thermal properties of ZrO2 nanoparticles in different structures. Bull. Mater. Sci. 39, 1295–1302 (2016). https://doi.org/10.1007/s12034-016-1244-5

    Article  Google Scholar 

  35. Ghosh, A.; Dey, G.K.; Suri, A.K.: Correlation of electrical conductivity with microstructure in 3Y-TZP System: From nano to submicrometer grain size range. J. Am. Ceram. Soc. 91(11), 3768–3770 (2008). https://doi.org/10.1111/j.1551-2916.2008.02696.x

    Article  Google Scholar 

  36. Dura, O.J.; De la Torre, L.; Chaboy, V.J.; Boada, R., et al.: Ionic conductivity of nanocrystalline yttria-stabilized zirconia: grain boundary and size effects. Phys. Rev. B 81, 184301 (2010). https://doi.org/10.1103/PhysRevB.81.184301

    Article  Google Scholar 

  37. Kazlauskas, S.; Kazakevičius, E.; Zalga, A.; Daugėla, S.; Kežionis, A.: Peculiarities of charge carrier relaxation in grain boundary of gadolinium-doped ceria ceramics. Lith. J. Phys. 59, 94–103 (2019)

    Article  Google Scholar 

  38. Miyoshi, S.; Akao, Y.; Kuwata, N.; Kawamura, J.; Oyama, Y., et al.: Low-temperature protonic conduction based on surface protonics: an example of nano-structured yttria-doped zirconia. Chem. Mater. 26, 5194–5200 (2014). https://doi.org/10.1021/cm5012923

    Article  Google Scholar 

  39. Doroshkevich, A.S.; Asgerov, E.B.; Shylo, A.V.; Lyubchyk, A.I., et al.: Direct conversion of the water adsorption energy to electricity on the surface of zirconia nanoparticles. Appl. Nanosci. 9, 1603–1609 (2019). https://doi.org/10.1007/s13204-019-00979-6

    Article  Google Scholar 

  40. Sun, Z.; Wen, X.; Wang, L.; Ji, D.; Qin, X., et al.: Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience (2022). https://doi.org/10.1016//j.esci2021.12.009

    Article  Google Scholar 

  41. Huang, Y.; Cheng, H.; Yang, C.; Zhang, P.; Liao, Q., et al.: Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 9, 4166 (2018). https://doi.org/10.1038/s41467-018-06633-z

    Article  Google Scholar 

  42. Danilenko, I.; Gorban, O.; Shylo, A.; Volkova, G., et al.: Humidity to electricity converter based on oxide nanoparticles. J. Mater. Sci. (2022). https://doi.org/10.1007/s.10853-021-06657-9

    Article  Google Scholar 

  43. Shylo, A.; Danilenko, I.; Gorban, O.; Doroshkevich, O., et al.: Hydrated zirconia nanoparticles as media for electrical charge accumulation. J. Nanopart. Res. 24, 18 (2022). https://doi.org/10.1007/s11051-022-05407-5

    Article  Google Scholar 

  44. Konstantinova, T.; Danilenko, I.; Glazunova, V.; Volkova, G.; Gorban, O.: Mesoscopic phenomena in oxide nanoparticles systems: processes of growth. J. Nanopart. Res. 13, 4015–4023 (2011). https://doi.org/10.1007/s11051-011-0329-8

    Article  Google Scholar 

  45. Gorban, O.; Synyakina, S.; Volkova, G.; Kulik, Y.; Konstantinova, T.: Surface influence on the behavior of stabilized zirconia nanoparticles under pressure. High Press. Res. 32, 72–80 (2012). https://doi.org/10.1080/08957959.2012.655245

    Article  Google Scholar 

  46. Azhar, O.; Jahan, Z.; Sher, F.; Niazi, M.B.K., et al.: Cellulose acetate-polyvinyl alcohol blend hemodialysis membranes integrated with dialysis performance and high biocompatibility. Mater. Sci. Eng. C. 126, 112–127 (2021). https://doi.org/10.1016/j.msec.2021.112127

    Article  Google Scholar 

  47. Sani, E.; Mercatelli, L.; Sans, J.-L.; Sciti, D.: Optical properties of black and white ZrO2 for solar receiver applications. Solar Energy Mater. Solar Cells 140, 477–482 (2015). https://doi.org/10.1016/j.solmat.2015.02.007

    Article  Google Scholar 

  48. Al-Rawi, U.A.; Sherb, F.; Hazafa, A.; Bilala, M., et al.: Synthesis of Zeolite supported bimetallic catalyst and application in n-hexane hydro-isomerization using supercritical CO2. J. Environ. Chem. Eng. 9(4), 105206 (2021). https://doi.org/10.1016/j.jece.2021.105206

    Article  Google Scholar 

  49. Frey, J.G.: Dark lab or smart lab: the challenges for 21st century laboratory software. Org. Proc. Res. Dev. 8, 1024–1035 (2004). https://doi.org/10.1021/op049895g

    Article  Google Scholar 

  50. Brunauer, S.; Emmett, P.H.; Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938). https://doi.org/10.1021/ja01269a023

    Article  Google Scholar 

  51. Galarneau, A.; Mehlhorn, D.; Guenneau, F.; Coasne, B., et al.: Specific surface area determination for microporous/mesoporous materials: the case of mesoporous FAU-Y zeolites. Langmuir, ACS. 34(47), 14134–14142 (2018). https://doi.org/10.1021/acs.langmuir.8b02144.hal-01938089f

    Article  Google Scholar 

  52. Geffert, A.; Geffertova, J.; Dudiak, M.: Direct method of measuring the pH value of wood. Forests 10(1–9), 852 (2019). https://doi.org/10.3390/f10100852

    Article  Google Scholar 

  53. Plohl, O.; Zemljic, L.F.; Potrc, S.; Luxbacher, T.: Applicability of electro-osmotic flow for the analysis of the surface zeta potential. RSC Adv. 10, 6777–6789 (2020). https://doi.org/10.1039/C9RA10414C

    Article  Google Scholar 

  54. Ivers-Tiffee, E.; Weber, A.: Evaluation of electrochemical impedance spectra by the distribution of relaxation times. J. Ceram. Soc. Jpn. 125, 193–201 (2017). https://doi.org/10.2109/jcersj2.16267

    Article  Google Scholar 

  55. Ciuccia, F.; Chena, C.: Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: a Bayesian and hierarchical Bayesian approach. Electrochim. Acta 167, 439–454 (2015). https://doi.org/10.1016/j.electacta.2015.03.123

    Article  Google Scholar 

  56. Barsoukov, E.; Macdonald, J.R.: Impedance Spectroscopy. Theory. Experiment and Application. Wiley-Interscience, New York (2005) https://doi.org/10.1002/9781119381860

    Book  Google Scholar 

  57. Schlupp, M.V.F.; Scherrer, B.; Ma, H.; Grolig, J.G., et al.: Influence of microstructure on the cross-plane oxygen ion conductivity of yttria stabilized zirconia thin films. Phys. Status Solidi A. 209, 1–9 (2012). https://doi.org/10.1002/pssa.201228248

    Article  Google Scholar 

  58. Dietz, J.: Enterprise Ontology—Theory and Methodology. Springer, Berlin (2006) https://doi.org/10.1007/3-540-33149-2

    Book  Google Scholar 

  59. Krishna Sarenda, M.; Annapoorani, S.; Ansar, E.B.; Harikrishna Varma, P.R., et al.: Magnetic hydtoremia studies on water-soluble polyacrylic acid-coated cobalt ferrite nanoparticles. J. Nanopart. Res. 16, 2773 (2014). https://doi.org/10.1007/s11051-014-2773-8

    Article  Google Scholar 

  60. Pilipenko, N.P.; Konstantinova, T.E.; Tokiy, V.V.; Danilenko, I.A., et al.: Peculiarities of zirconium hydroxide microwave drying process. Funct. Mater. 2, 545–548 (2002)

    Google Scholar 

  61. Gorban, O.A.; Synyakina, S.A.; Kulik, Yu.O.; Ryumshina, T.A., et al.: Structural evolution of the ZrO2–Y2O3 nanoparticulate xerogels under high hydrostatic pressure. Funct. Mater. 17(40), 1–6 (2010)

    Google Scholar 

  62. Ivanov, V.K.; Baranchikov, A.Y.; Kopitsa, G.P.; Lermontov, S.A.; Yurkova, L.L., et al.: pH control of the structure, composition, and catalytic activity of sulfated zirconia. J. Solid State Chem. 198, 496–505 (2013). https://doi.org/10.1016/j.jssc.2012.11.022

    Article  Google Scholar 

  63. Tao, K.; Dou, H.; Sun, K.: Interfacial coprecipitation to prepare magnetite nanoparticles: concentration and temperature dependence. Colloids Surf. A Physicochem. Eng. Asp. 320, 115–122 (2008). https://doi.org/10.1016/j.colsurfa.2008.01.051

    Article  Google Scholar 

  64. Galarneau, A.; Villemot, F.; Rodriguez, J.; Fajula, F.; Coasne, B.: Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials. Langmuir 30, 13266–13274 (2014). https://doi.org/10.1021/la5026679|

    Article  Google Scholar 

  65. Wohlleben, W.; Mielke, J.; Bianchin, A.; Ghanem, A., et al.: Reliable nanomaterial classification of powders using the volume-specific surface area method. J. Nanopart. Res. 19, 61 (2017). https://doi.org/10.1007/s11051-017-3741-x

    Article  Google Scholar 

  66. Green, M.C.; Taylor, R.; Moeser, G.D.; Kyrlidis, A.; Sawka, R.M.: Mesoporous carbon black and processes making same. Patent USA, US 2009/0208751 A1 Aug. 20 (2009)

  67. Sinelnikova, S.; Volkova, G.; Gorban, O.: Influence of dopant amount on evolution of zirconia crystal energy. Non-equilibrium phase transformations. Int. Sci. J. Mater. Sci. 1, 7–10 (2016)

    Google Scholar 

  68. Sameut-Bouhaik, I.; Leroy, P.; Ollivier, P.; Azaroual, M.; Mercury, L.: Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles: application to the modeling of their aggregation kinetics. J. Colloid Interface Sci. 406, 75–85 (2013). https://doi.org/10.1016/j.jcis.2013.05.034

    Article  Google Scholar 

  69. Muccillo, R.; Muccillo, E.N.S.: Electric field assisted sintering of electroceramics and in situ analysis by impedance spectroscopy. J. Electroceram. 38, 24–42 (2017). https://doi.org/10.1007/s10832-016-0054-x

    Article  Google Scholar 

  70. Yavarinasab, A.; Janfaza, S.; Tahmooressi, H.; Ghazi, M., et al.: A selective polypyrrole-based sub-ppm impedimetric sensor for the detection of dissolved hydrogen sulfide and ammonia in a mixture. J. Hazard Mater. 416, 125892 (2021). https://doi.org/10.1016/j.jhazmat.2021.125892

    Article  Google Scholar 

  71. Kežionis, A.; Kazlauskas, S.; Petrulionis, D.; Orliukas, A.F.: Relationship between charge carrier relaxation and peculiarities of electric response in some solid oxygen ion conductors. Solid State Ion. 279, 25–31 (2015). https://doi.org/10.1016/j.ssi.2015.07.009

    Article  Google Scholar 

  72. Yavarinasab, A.; Janfaza, S.; Tasnim, N.; Tahmooressi, H., et al.: Graphene/poly (methyl methacrylate) electrochemical impedancetransduced chemiresistor for detection of volatile organic compounds in aqueous medium. Anal. Chim. Acta 1109, 27–36 (2020). https://doi.org/10.1016/j.aca.2020.02.065

    Article  Google Scholar 

  73. McNealy, B.E.; Hertz, J.L.: On the use of the constant phase element to understand variation in grain boundary properties. Solid State Ionics 256, 52–60 (2014). https://doi.org/10.1016/j.ssi.2013.12.030

    Article  Google Scholar 

  74. Kusnezof, M.; Wagner, D.; Schilm, J.; Heubner, C., et al.: Influence of microstructure and crystalline phases on impedance spectra of sodium conducting glass ceramics produced from glass powder. J. Solid State Electrochem. 26, 375–388 (2022). https://doi.org/10.1007/s10008-021-05063-0

    Article  Google Scholar 

  75. Osinkin, D.; Antonova, A.; Lesnichyova, A.; Tropin, E.: Application of promising electrode materials in contact with a thin-layer ZrO2-based supporting electrolyte for solid oxide fuel cells. Energies 13(5), 1190 (2020). https://doi.org/10.3390/en13051190

    Article  Google Scholar 

  76. Deportes, C.; Duclot, M.; Fabry, P.; Fouletier, J., et al.: Electrochimie des Solides. Grenoble Sciences, Grenoble (2008) https://doi.org/10.1051/978-2-7598-1216-5

    Book  Google Scholar 

  77. Irvine, J.T.S.; Sinclair, D.C.; West, A.R.: Electroceramics: characterization by impedance spectroscopy. J. Adv. Mater. 2(3), 138–192 (1990). https://doi.org/10.1002/adma.19900020304

    Article  Google Scholar 

  78. Kleitz, M.; Dessemond, L.; Steil, M.C.: Model for ion-blocking at internal interfaces in zirconias. Solid State Ion. 75, 107–115 (1995). https://doi.org/10.1016/j.pmatsci.2005.07.001

    Article  Google Scholar 

  79. Guo, X.; Waizer, R.: Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog. Mater. Sci. 51, 151–210 (2006). https://doi.org/10.1016/j.pmatsci.2005.07.001

    Article  Google Scholar 

  80. Kilo, M.; Argirusis, C.; Borchardt, G.; Jackson, R.A.: Oxygen diffusion in yttria stabilized zirconia—experimental results and molecular dynamics calculations. Phys. Chem. Chem. Phys. 5, 2219–2224 (2003). https://doi.org/10.1039/b300151m

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful the H2020-MSCA-RISE-2019 Program, project 871284 SSHARE for partial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oksana Gorban.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorban, A., Shylo, A., Dmitrenko, V. et al. Zirconia-Based Nanomaterials for Alternative Energy Application: Concept of Research in Smart Laboratory. Arab J Sci Eng 48, 8453–8469 (2023). https://doi.org/10.1007/s13369-022-06976-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06976-2

Keywords

Navigation