Skip to main content

Mie Scattering Theory for Identifying Surface Plasmon Resonances (SPR) by the Finite-Size Model: Theoretical Study of Gold-Silver Core–Shell Nanospheres

Abstract

The Mie scattering theory investigates the optical, electric, and magnetic properties of the gold nanospheres. It explains the nanospheres plasmonic phenomenon in a vacuum and metallic medium by using the finite-size model. It also investigated the effect of particle radius on these properties by varying the radius from 10 to 50 nm. We reported that the optical efficiency shows the existence of plasmon surrounding the nanoparticle, and the polarizability explains the quantity of the plasmon. In addition, the polarizability increases at the specific incident energy of electromagnetic waves which indicated the existence of the plasmon surrounding the nanosphere particle.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Ahmadivand, A.; Karabiyik, M.; Pala, N.: Plasmonic photodetectors. Photodetect. Mater. Dev. Appl. (2016). https://doi.org/10.1016/B978-1-78242-445-1.00006-3

    Article  Google Scholar 

  2. Li, L.; Li, T.; Tang, X.M.; Zhu, S.N.: Plasmonic polarization generator in well-routed beaming. Light Sci. Appl. 4, 1–5 (2015). https://doi.org/10.1038/lsa.2015.103

    Article  Google Scholar 

  3. Fan, X.; Hao, Q.; Qiu, T.; Chu, P.K.: Improving the performance of light-emitting diodes via plasmonic-based strategies. J. Appl. Phys. 127, 040901 (2020). https://doi.org/10.1063/1.5129365

    Article  Google Scholar 

  4. Yao, G.Y.; Zhao, Z.Y.; Liu, Q.L.; Dong, X.D.; Zhao, Q.M.: Theoretical calculations for localized surface plasmon resonance effects of Cu/TiO2 nanosphere: Generation, modulation, and application in photocatalysis. Sol. Energy Mater. Sol. Cells 208, 110385 (2020). https://doi.org/10.1016/j.solmat.2019.110385

    Article  Google Scholar 

  5. Amendola, V.; Pilot, R.; Frasconi, M.; Marago, O.M.; Lati, M.A.: Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter (2017). https://doi.org/10.1088/1361-648X/aa60f3

    Article  Google Scholar 

  6. Asenjo-Garcia, A.; Manjavacas, A.; Myroshnychenko, V.; García de Abajo, F.J.: Magnetic polarization in the optical absorption of metallic nanoparticles. Opt. Express 20(27), 28142–28152 (2012). https://doi.org/10.1364/OE.20.028142

    Article  Google Scholar 

  7. Monticone, F.; Alu, A.: Metamaterial, plasmonic and nanophotonic devices. Rep. Progress Phys. (2017). https://doi.org/10.1088/1361-6633/aa518f

    Article  Google Scholar 

  8. Jin, H.; Lin, G.; Bai, L.; Amjad, M.; Filho, E.P.B.; Wen, D.: Photothermal conversion efficiency of nanofluids: an experimental and numerical study. Sol. Energy 139, 278–289 (2016). https://doi.org/10.1016/j.solener.2016.09.021

    Article  Google Scholar 

  9. Yan, H.; Song, X.; Wang, X.; Wang, Y.: Electromagnetic wave absorption and scattering analysis for Fe3O4 with different scales particles. Chem. Phys. Lett. 723, 51–56 (2019). https://doi.org/10.1016/j.cplett.2019.03.033

    Article  Google Scholar 

  10. Vos, M.; Grande, P.L.: Simple model dielectric functions for insulators. J. Phys. Chem. Solids 104, 192–197 (2017). https://doi.org/10.1016/j.jpcs.2016.12.015

    Article  Google Scholar 

  11. Porfyrakis, P.; Tsitsas, N.L.: Nonlinear electromagnetic metamaterials: aspects on mathematical modeling and physical phenomena. Microelectron. Eng. 216, 111028 (2019). https://doi.org/10.1016/j.mee.2019.111028

    Article  Google Scholar 

  12. Fedorova, I.V.; Eliseeva, S.V.; Sementsov, D.I.: Spectral and polarization properties of a planar multiferroic structure. Opt. Commun. 458, 124881 (2019). https://doi.org/10.1016/j.optcom.2019.124881

    Article  Google Scholar 

  13. Xie, H.N.; Larmour, I.A.; Smith, W.E.; Faulds, K.; Graham, D.: Surface-enhanced Raman scattering investigation of hollow gold nanospheres. J. Phys. Chem. C 116(14), 8338–8342 (2012). https://doi.org/10.1021/jp3014089

    Article  Google Scholar 

  14. Farooq, S.; de Araujo, R.E.: Engineering a localized surface plasmon resonance platform for molecular biosensing. Open J. Appl. Sci. 8(3), 126–139 (2018). https://doi.org/10.4236/ojapps.2018.83010

    Article  Google Scholar 

  15. Ferdows, M.; Alzahrani, F.: Study of non-isothermal incompressible flow and heat flux of nano-ferrofluid with induced magnetic induction. Int. Commun. Heat Mass Transf. 109, 104352 (2019). https://doi.org/10.1016/j.icheatmasstransfer.2019.104352

    Article  Google Scholar 

  16. Chen, J.; Qi, S.; Hong, X.; Gu, P.; Wei, R.; Tang, C.; Huang, Y.; Zhao, C.: Highly sensitive 3D metamaterial sensor based on diffraction coupling of magnetic plasmon resonances. Results Phys. 15, 102791 (2019). https://doi.org/10.1016/j.rinp.2019.102791

    Article  Google Scholar 

  17. Halder, S.; Bhuyan, S.; Das, S.N.; Sahoo, S.; Choudhary, R.N.P.; Das, P.; Parida, K.: Structural, morphological, dielectric and impedance spectroscopy of lead-free Bi(Zn2/3Ta1/3)O3 electronic material. Appl. Phys. A Mater. Sci. Process. 123, 781 (2017). https://doi.org/10.1007/s00339-017-1406-3

    Article  Google Scholar 

  18. Deb, K.; Bera, A.; Bhowmik, K.L.; Saha, B.: Conductive polyaniline on paper as a flexible electronic material with controlled physical properties through vapor phase polymerization. Polym. Eng. Sci. 58, 2249–2255 (2018). https://doi.org/10.1002/pen.24845

    Article  Google Scholar 

  19. Pham, T.S.; Bui, H.N.; Lee, J.W.: Wave propagation control and switching for wireless power transfer using tunable 2-D magnetic metamaterials. J. Magn. Magn. Mater. 485, 126–135 (2019). https://doi.org/10.1016/j.jmmm.2019.04.034

    Article  Google Scholar 

  20. Hu, Z.; Kanagaraj, J.; Hong, H.; Yang, K.; Fan, Q.H.; Kharel, P.: Characterization of ferrite magnetic nanoparticle modified polymeric composites by modeling. J. Magn. Magn. Mater. 493, 165735 (2020). https://doi.org/10.1016/j.jmmm.2019.165735

    Article  Google Scholar 

  21. Xia, W.; Lu, J.; Tan, S.; Liu, J.; Zhang, Z.: Manipulating dielectric properties by modifying molecular structure of polymers. Dielectr. Polym. Mater. High Density Energy Storage (2018). https://doi.org/10.1016/B978-0-12-813215-9.00004-X

    Article  Google Scholar 

  22. Devilez, A.; Zambrana-Puyalto, X.; Stout, B.; Bonod, N.: Mimicking localized surface plasmons with dielectric particles. Phys. Rev. B Condens. Matter Mater. Phys. 92, 241412 (2015). https://doi.org/10.1103/PhysRevB.92.241412

    Article  Google Scholar 

  23. Zhou, N.; Yan, R.; Wang, X.; Fu, J.; Zhang, J.; Li, Y.; Sun, X.: Tunable thickness of mesoporous ZnO-coated metal nanoparticles for enhanced visible-light driven photoelectrochemical water splitting. Chemosphere 273, 129679 (2021). https://doi.org/10.1016/j.chemosphere.2021.129679

    Article  Google Scholar 

  24. Avasthi, D.K.; Mishra, Y.K.; Singhal, R.; Kabiraj, D.; Mohapatra, S.; Mohanta, B.; Gohil, N.K.; Singh, N.: Synthesis of plasmonic nanocomposites for diverse applications. J. Nanosci. Nanotechnol. 10(4), 2705–2712 (2010). https://doi.org/10.1166/jnn.2010.1433

    Article  Google Scholar 

  25. Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A.M.; Novo, C.; Mulvaney, P.; Liz-Marzán, L.M.; Abajo, F.J.G.D.: Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37(9), 1792–1805 (2008). https://doi.org/10.1039/b711486a

    Article  Google Scholar 

  26. Tzarouchis, D.; Sihvola, A.: Light scattering by a dielectric sphere: perspectives on the Mie resonances. Appl. Sci. 8(2), 184 (2018). https://doi.org/10.3390/app8020184

    Article  Google Scholar 

  27. Bech, H.; Leder, A.: Two-particle characterization by pulse induced and time resolved Mie scattering. Optik 122, 37–43 (2011). https://doi.org/10.1016/j.ijleo.2009.10.006

    Article  Google Scholar 

  28. Aizpurua, J.; Hanarp, P.; Sutherland, D.S.; Kall, M.; Bryant, G.W.; Abajo, F.J.G.D.: Optical properties of gold nanorings. Phys. Rev. Lett. 90, 057401 (2003). https://doi.org/10.1103/PhysRevLett.90.057401

    Article  Google Scholar 

  29. Bi, K.; Zeng, L.; Chen, H.; Fang, C.; Wang, Q.; Lei, M.: Magnetic coupling effect of Mie resonance-based metamaterial with inclusion of split ring resonators. J. Alloys Compd. 646, 680–684 (2015). https://doi.org/10.1016/j.jallcom.2015.05.247

    Article  Google Scholar 

  30. Hu, W.; Yi, N.; Sun, S.; Cui, L.; Song, Q.; Xiao, S.: Enhancement of magnetic dipole emission at yellow light in optical metamaterials. Opt. Commun. 350, 202–206 (2015). https://doi.org/10.1016/j.optcom.2015.03.077

    Article  Google Scholar 

  31. Li, W.; Wei, J.; Wang, W.; Hu, D.; Li, Y.; Guan, J.: Ferrite-based metamaterial microwave absorber with absorption frequency magnetically tunable in a wide range. Mater. Des. 110, 27–34 (2016). https://doi.org/10.1016/j.matdes.2016.07.118

    Article  Google Scholar 

  32. Navarrete, J.; Siefe, C.; Alcantar, S.; Belt, M.; Stucky, G.D.; Moskovits, M.: Merely measuring the UV-visible spectrum of gold nanoparticles can change their charge state. Nano Lett. 18(2), 669–674 (2018). https://doi.org/10.1021/acs.nanolett.7b02592

    Article  Google Scholar 

  33. Fiedler, J.; Thiyam, P.; Kurumbail, A.; Burger, F.A.; Walter, M.; Persson, C.; Brevik, I.; Parsons, D.F.; Bostrom, M.; Buhmann, S.Y.: Effective polarizability models. J. Phys. Chem. A 121(51), 9742–9751 (2017). https://doi.org/10.1021/acs.jpca.7b10159

    Article  Google Scholar 

  34. Liu, W.; McLeod, E.: Accuracy of the skin depth correction for metallic nanoparticle polarizability. J. Phys. Chem. C 123(20), 13009–13014 (2019). https://doi.org/10.1021/acs.jpcc.9b01672

    Article  Google Scholar 

  35. Zhao, Q.; Zhou, J.; Zhang, F.; Lippens, D.: Mie resonance-based dielectric metamaterials. Mater. Today 12(12), 60–69 (2009). https://doi.org/10.1016/S1369-7021(09)70318-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dahlang Tahir.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahri, A.N., Heryanto, H. & Tahir, D. Mie Scattering Theory for Identifying Surface Plasmon Resonances (SPR) by the Finite-Size Model: Theoretical Study of Gold-Silver Core–Shell Nanospheres. Arab J Sci Eng 48, 789–801 (2023). https://doi.org/10.1007/s13369-022-06968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06968-2

Keywords