Abstract
The Mie scattering theory investigates the optical, electric, and magnetic properties of the gold nanospheres. It explains the nanospheres plasmonic phenomenon in a vacuum and metallic medium by using the finite-size model. It also investigated the effect of particle radius on these properties by varying the radius from 10 to 50 nm. We reported that the optical efficiency shows the existence of plasmon surrounding the nanoparticle, and the polarizability explains the quantity of the plasmon. In addition, the polarizability increases at the specific incident energy of electromagnetic waves which indicated the existence of the plasmon surrounding the nanosphere particle.
This is a preview of subscription content, access via your institution.









References
Ahmadivand, A.; Karabiyik, M.; Pala, N.: Plasmonic photodetectors. Photodetect. Mater. Dev. Appl. (2016). https://doi.org/10.1016/B978-1-78242-445-1.00006-3
Li, L.; Li, T.; Tang, X.M.; Zhu, S.N.: Plasmonic polarization generator in well-routed beaming. Light Sci. Appl. 4, 1–5 (2015). https://doi.org/10.1038/lsa.2015.103
Fan, X.; Hao, Q.; Qiu, T.; Chu, P.K.: Improving the performance of light-emitting diodes via plasmonic-based strategies. J. Appl. Phys. 127, 040901 (2020). https://doi.org/10.1063/1.5129365
Yao, G.Y.; Zhao, Z.Y.; Liu, Q.L.; Dong, X.D.; Zhao, Q.M.: Theoretical calculations for localized surface plasmon resonance effects of Cu/TiO2 nanosphere: Generation, modulation, and application in photocatalysis. Sol. Energy Mater. Sol. Cells 208, 110385 (2020). https://doi.org/10.1016/j.solmat.2019.110385
Amendola, V.; Pilot, R.; Frasconi, M.; Marago, O.M.; Lati, M.A.: Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter (2017). https://doi.org/10.1088/1361-648X/aa60f3
Asenjo-Garcia, A.; Manjavacas, A.; Myroshnychenko, V.; García de Abajo, F.J.: Magnetic polarization in the optical absorption of metallic nanoparticles. Opt. Express 20(27), 28142–28152 (2012). https://doi.org/10.1364/OE.20.028142
Monticone, F.; Alu, A.: Metamaterial, plasmonic and nanophotonic devices. Rep. Progress Phys. (2017). https://doi.org/10.1088/1361-6633/aa518f
Jin, H.; Lin, G.; Bai, L.; Amjad, M.; Filho, E.P.B.; Wen, D.: Photothermal conversion efficiency of nanofluids: an experimental and numerical study. Sol. Energy 139, 278–289 (2016). https://doi.org/10.1016/j.solener.2016.09.021
Yan, H.; Song, X.; Wang, X.; Wang, Y.: Electromagnetic wave absorption and scattering analysis for Fe3O4 with different scales particles. Chem. Phys. Lett. 723, 51–56 (2019). https://doi.org/10.1016/j.cplett.2019.03.033
Vos, M.; Grande, P.L.: Simple model dielectric functions for insulators. J. Phys. Chem. Solids 104, 192–197 (2017). https://doi.org/10.1016/j.jpcs.2016.12.015
Porfyrakis, P.; Tsitsas, N.L.: Nonlinear electromagnetic metamaterials: aspects on mathematical modeling and physical phenomena. Microelectron. Eng. 216, 111028 (2019). https://doi.org/10.1016/j.mee.2019.111028
Fedorova, I.V.; Eliseeva, S.V.; Sementsov, D.I.: Spectral and polarization properties of a planar multiferroic structure. Opt. Commun. 458, 124881 (2019). https://doi.org/10.1016/j.optcom.2019.124881
Xie, H.N.; Larmour, I.A.; Smith, W.E.; Faulds, K.; Graham, D.: Surface-enhanced Raman scattering investigation of hollow gold nanospheres. J. Phys. Chem. C 116(14), 8338–8342 (2012). https://doi.org/10.1021/jp3014089
Farooq, S.; de Araujo, R.E.: Engineering a localized surface plasmon resonance platform for molecular biosensing. Open J. Appl. Sci. 8(3), 126–139 (2018). https://doi.org/10.4236/ojapps.2018.83010
Ferdows, M.; Alzahrani, F.: Study of non-isothermal incompressible flow and heat flux of nano-ferrofluid with induced magnetic induction. Int. Commun. Heat Mass Transf. 109, 104352 (2019). https://doi.org/10.1016/j.icheatmasstransfer.2019.104352
Chen, J.; Qi, S.; Hong, X.; Gu, P.; Wei, R.; Tang, C.; Huang, Y.; Zhao, C.: Highly sensitive 3D metamaterial sensor based on diffraction coupling of magnetic plasmon resonances. Results Phys. 15, 102791 (2019). https://doi.org/10.1016/j.rinp.2019.102791
Halder, S.; Bhuyan, S.; Das, S.N.; Sahoo, S.; Choudhary, R.N.P.; Das, P.; Parida, K.: Structural, morphological, dielectric and impedance spectroscopy of lead-free Bi(Zn2/3Ta1/3)O3 electronic material. Appl. Phys. A Mater. Sci. Process. 123, 781 (2017). https://doi.org/10.1007/s00339-017-1406-3
Deb, K.; Bera, A.; Bhowmik, K.L.; Saha, B.: Conductive polyaniline on paper as a flexible electronic material with controlled physical properties through vapor phase polymerization. Polym. Eng. Sci. 58, 2249–2255 (2018). https://doi.org/10.1002/pen.24845
Pham, T.S.; Bui, H.N.; Lee, J.W.: Wave propagation control and switching for wireless power transfer using tunable 2-D magnetic metamaterials. J. Magn. Magn. Mater. 485, 126–135 (2019). https://doi.org/10.1016/j.jmmm.2019.04.034
Hu, Z.; Kanagaraj, J.; Hong, H.; Yang, K.; Fan, Q.H.; Kharel, P.: Characterization of ferrite magnetic nanoparticle modified polymeric composites by modeling. J. Magn. Magn. Mater. 493, 165735 (2020). https://doi.org/10.1016/j.jmmm.2019.165735
Xia, W.; Lu, J.; Tan, S.; Liu, J.; Zhang, Z.: Manipulating dielectric properties by modifying molecular structure of polymers. Dielectr. Polym. Mater. High Density Energy Storage (2018). https://doi.org/10.1016/B978-0-12-813215-9.00004-X
Devilez, A.; Zambrana-Puyalto, X.; Stout, B.; Bonod, N.: Mimicking localized surface plasmons with dielectric particles. Phys. Rev. B Condens. Matter Mater. Phys. 92, 241412 (2015). https://doi.org/10.1103/PhysRevB.92.241412
Zhou, N.; Yan, R.; Wang, X.; Fu, J.; Zhang, J.; Li, Y.; Sun, X.: Tunable thickness of mesoporous ZnO-coated metal nanoparticles for enhanced visible-light driven photoelectrochemical water splitting. Chemosphere 273, 129679 (2021). https://doi.org/10.1016/j.chemosphere.2021.129679
Avasthi, D.K.; Mishra, Y.K.; Singhal, R.; Kabiraj, D.; Mohapatra, S.; Mohanta, B.; Gohil, N.K.; Singh, N.: Synthesis of plasmonic nanocomposites for diverse applications. J. Nanosci. Nanotechnol. 10(4), 2705–2712 (2010). https://doi.org/10.1166/jnn.2010.1433
Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A.M.; Novo, C.; Mulvaney, P.; Liz-Marzán, L.M.; Abajo, F.J.G.D.: Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37(9), 1792–1805 (2008). https://doi.org/10.1039/b711486a
Tzarouchis, D.; Sihvola, A.: Light scattering by a dielectric sphere: perspectives on the Mie resonances. Appl. Sci. 8(2), 184 (2018). https://doi.org/10.3390/app8020184
Bech, H.; Leder, A.: Two-particle characterization by pulse induced and time resolved Mie scattering. Optik 122, 37–43 (2011). https://doi.org/10.1016/j.ijleo.2009.10.006
Aizpurua, J.; Hanarp, P.; Sutherland, D.S.; Kall, M.; Bryant, G.W.; Abajo, F.J.G.D.: Optical properties of gold nanorings. Phys. Rev. Lett. 90, 057401 (2003). https://doi.org/10.1103/PhysRevLett.90.057401
Bi, K.; Zeng, L.; Chen, H.; Fang, C.; Wang, Q.; Lei, M.: Magnetic coupling effect of Mie resonance-based metamaterial with inclusion of split ring resonators. J. Alloys Compd. 646, 680–684 (2015). https://doi.org/10.1016/j.jallcom.2015.05.247
Hu, W.; Yi, N.; Sun, S.; Cui, L.; Song, Q.; Xiao, S.: Enhancement of magnetic dipole emission at yellow light in optical metamaterials. Opt. Commun. 350, 202–206 (2015). https://doi.org/10.1016/j.optcom.2015.03.077
Li, W.; Wei, J.; Wang, W.; Hu, D.; Li, Y.; Guan, J.: Ferrite-based metamaterial microwave absorber with absorption frequency magnetically tunable in a wide range. Mater. Des. 110, 27–34 (2016). https://doi.org/10.1016/j.matdes.2016.07.118
Navarrete, J.; Siefe, C.; Alcantar, S.; Belt, M.; Stucky, G.D.; Moskovits, M.: Merely measuring the UV-visible spectrum of gold nanoparticles can change their charge state. Nano Lett. 18(2), 669–674 (2018). https://doi.org/10.1021/acs.nanolett.7b02592
Fiedler, J.; Thiyam, P.; Kurumbail, A.; Burger, F.A.; Walter, M.; Persson, C.; Brevik, I.; Parsons, D.F.; Bostrom, M.; Buhmann, S.Y.: Effective polarizability models. J. Phys. Chem. A 121(51), 9742–9751 (2017). https://doi.org/10.1021/acs.jpca.7b10159
Liu, W.; McLeod, E.: Accuracy of the skin depth correction for metallic nanoparticle polarizability. J. Phys. Chem. C 123(20), 13009–13014 (2019). https://doi.org/10.1021/acs.jpcc.9b01672
Zhao, Q.; Zhou, J.; Zhang, F.; Lippens, D.: Mie resonance-based dielectric metamaterials. Mater. Today 12(12), 60–69 (2009). https://doi.org/10.1016/S1369-7021(09)70318-9
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fahri, A.N., Heryanto, H. & Tahir, D. Mie Scattering Theory for Identifying Surface Plasmon Resonances (SPR) by the Finite-Size Model: Theoretical Study of Gold-Silver Core–Shell Nanospheres. Arab J Sci Eng 48, 789–801 (2023). https://doi.org/10.1007/s13369-022-06968-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13369-022-06968-2