Skip to main content
Log in

The Application of Clay-Based Nanocomposite Hydrogels in Wound Healing

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Recently, nanoclays have gained amount of attention as being the potential nanomaterials in the wound healing field. Due to having a high specific area, high adsorption of several therapeutic agents, good chemical inertness, and low cost, these nanomaterials are more interested in using. In this paper, we thoroughly introduced common types of nanoclays such as halloysite, kaolinite, montmorillonite, and bentonite. Interesting physical and chemical characteristics of these nanoclays are described. Further, the methods through which nanoclays are processed to form hydrogels are described. These included methods are not limited to in situ free radical polymerization, supramolecular assembly, freeze-thawing, and grafting. Finally, in this paper clay-based hydrogels and their unique properties such as antimicrobial properties and their application in wound healing are thoroughly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Modified from reference

Fig. 4
Fig. 5
Fig. 6
Fig. 7

Modified from reference

Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ruiz-Hitzky, E.; Darder, M.; Fernandes, F.M.; Wicklein, B.; Alcântara, A.C.; Aranda, P.: Fibrous clays based bionanocomposites. Prog. Polym. Sci. 38(10–11), 1392–1414 (2013)

    Google Scholar 

  2. Petrulyte, S.: Advanced textile materials and biopolymers in wound management. Dan. Med. Bull. 55(1), 72–77 (2008)

    Google Scholar 

  3. Davidson, J.R.: Current concepts in wound management and wound healing products. Vet. Clin.: Small Anim. Pract. 45(3), 537–564 (2015)

    Google Scholar 

  4. Cockbill SM, Turner TD. The development of wound management products. Krasner DL, Rodeheaver GT, Sibbald RG: Chronic wound care: a clinical source book for healthcare professionals 4th ed Malvern, PA: HMP Communications. 2007:233–48

  5. Hadisi, Z.; Nourmohammadi, J.; Nassiri, S.M.: The antibacterial and anti-inflammatory investigation of Lawsonia Inermis-gelatin-starch nano-fibrous dressing in burn wound. Int. J. Biol. Macromol. 107, 2008–2019 (2018)

    Google Scholar 

  6. Mishra, R.; Ramasamy, K.; Lim, S.; Ismail, M.; Majeed, A.: Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films. J. Mater. Sci. - Mater. Med. 25(8), 1925–1939 (2014)

    Google Scholar 

  7. Kalantari, K.; Mostafavi, E.; Saleh, B.; Soltantabar, P.; Webster, T.J.: Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications. Eur. Polymer J. 134, 109853 (2020)

    Google Scholar 

  8. Tottoli, E.M.; Dorati, R.; Genta, I.; Chiesa, E.; Pisani, S.; Conti, B.: Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 12(8), 735 (2020)

    Google Scholar 

  9. Moeini, A.; Pedram, P.; Makvandi, P.; Malinconico, M.; d’Ayala, G.G.: Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review. Carbohyd. Polym. 233, 115839 (2020)

    Google Scholar 

  10. Ye, S.; Jiang, L.; Wu, J.; Su, C.; Huang, C.; Liu, X., et al.: Flexible amoxicillin-grafted bacterial cellulose sponges for wound dressing: in vitro and in vivo evaluation. ACS Appl. Mater. Interfaces 10(6), 5862–5870 (2018)

    Google Scholar 

  11. Hakkarainen, T.; Koivuniemi, R.; Kosonen, M.; Escobedo-Lucea, C.; Sanz-Garcia, A.; Vuola, J., et al.: Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J. Control. Release 244, 292–301 (2016)

    Google Scholar 

  12. Rosińczuk J, Taradaj J, Dymarek R, Sopel M: Mechanoregulation of wound healing and skin homeostasis. Chronic Wounds, Wound Dressings and Wound Healing.S 2021:461–77

  13. Kamoun, E.A.; Kenawy, E.-R.S.; Chen, X.: A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 8(3), 217–233 (2017)

    Google Scholar 

  14. Mirhoseini, M.; Kianezhad, M.A.; Rezaeipour, B.; Ghasemi, M.; Rezanejad Gatabi, Z.; Nia, H.S., et al.: The synergistic effect of topical insulin and clindamycin on acute dermal wound healing in rat model: a histological study. J. Histotechnol. 244(2), 1–10 (2021)

    Google Scholar 

  15. Cañedo-Dorantes, L.; Cañedo-Ayala, M.: Skin acute wound healing: a comprehensive review. Int. J. Inflamm. (2019). https://doi.org/10.1155/2019/3706315

    Article  Google Scholar 

  16. Suarato, G.; Bertorelli, R.; Athanassiou, A.: Borrowing from Nature: biopolymers and biocomposites as smart wound care materials. Front. Bioeng. Biotechnol. 6, 137 (2018)

    Google Scholar 

  17. Daunton C, Kothari S, Smith L, Steele D: A history of materials and practices for wound management. Wound Practice & Research: Journal of the Australian Wound Management Association. 2012;20(4)

  18. Winter, G.D.: Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 193(4812), 293–294 (1962)

    Google Scholar 

  19. Moura, L.I.; Dias, A.M.; Carvalho, E.; de Sousa, H.C.: Recent advances on the development of wound dressings for diabetic foot ulcer treatment—a review. Acta Biomater. 9(7), 7093–7114 (2013)

    Google Scholar 

  20. Madaghiele, M.; Demitri, C.; Sannino, A.; Ambrosio, L.: Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates. Burns & Trauma 2(4), 2321–3868 (2014)

    Google Scholar 

  21. Ahmed, E.M.: Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6(2), 105–121 (2015)

    Google Scholar 

  22. Sharma, S.; Jain, P.; Tiwari, S.: Dynamic imine bond based chitosan smart hydrogel with magnified mechanical strength for controlled drug delivery. Int. J. Biol. Macromol. 160, 489–495 (2020)

    Google Scholar 

  23. Karoyo, A.H.; Wilson, L.D.: A review on the design and hydration properties of natural polymer-based hydrogels. Materials. 14(5), 1095 (2021)

    Google Scholar 

  24. Mondal, S.; Das, S.; Nandi, A.K.: A review on recent advances in polymer and peptide hydrogels. Soft Matter 16(6), 1404–1454 (2020)

    Google Scholar 

  25. Xiang, J.; Shen, L.; Hong, Y.: Status and future scope of hydrogels in wound healing: synthesis, materials and evaluation. Eur. Polymer J. 130, 109609 (2020)

    Google Scholar 

  26. Zhang, Y.; An, R.; Han, L.; Wang, X.; Shi, L.; Ran, R.: Novel self-healing, shape-memory, tunable double-layer actuators based on semi-ipn and physical double-network hydrogels. Macromol. Mater. Eng. 303(12), 1800505 (2018)

    Google Scholar 

  27. Macdougall, L.J.; Pérez-Madrigal, M.M.; Shaw, J.E.; Inam, M.; Hoyland, J.A.; O’Reilly, R., et al.: Self-healing, stretchable and robust interpenetrating network hydrogels. Biomater. Sci. 6(11), 2932–2937 (2018)

    Google Scholar 

  28. Kumari, P.V.K.; Rao, Y.S.; Akhila, S.: Role of nanocomposites in drug delivery. GSC Biol. Pharm. Sci. 8(3), 94–103 (2019)

    Google Scholar 

  29. Sharma R, Raina K. Structural and Electrical studies on ferroelectric polymer nanocomposites 2011

  30. Gaskell, E.E.; Hamilton, A.R.: Antimicrobial clay-based materials for wound care. Future Med. Chem. 6(6), 641–655 (2014)

    Google Scholar 

  31. Williams, L.B.; Metge, D.W.; Eberl, D.D.; Harvey, R.W.; Turner, A.G.; Prapaipong, P., et al.: What makes a natural clay antibacterial? Environ. Sci. Technol. 45(8), 3768–3773 (2011)

    Google Scholar 

  32. Beal GW, Cocke D. Process and composition of a gel for wound disinfection and promotion of healing. Google Patents (2014)

  33. Ambrogi, V.; Pietrella, D.; Nocchetti, M.; Casagrande, S.; Moretti, V.; De Marco, S., et al.: Montmorillonite–chitosan–chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. J. Colloid Interface Sci. 491, 265–272 (2017)

    Google Scholar 

  34. Barua, S.; Chattopadhyay, P.; Aidew, L.; Buragohain, A.K.; Karak, N.: Infection-resistant hyperbranched epoxy nanocomposite as a scaffold for skin tissue regeneration. Polym. Int. 64(2), 303–311 (2015)

    Google Scholar 

  35. Sandri, G.; Bonferoni, M.C.; Ferrari, F.; Rossi, S.; Aguzzi, C.; Mori, M., et al.: Montmorillonite–chitosan–silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: In vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohyd. Polym. 102, 970–977 (2014)

    Google Scholar 

  36. Shen, M.; Li, L.; Sun, Y.; Xu, J.; Guo, X.; Prud’homme, R.K.: Rheology and adhesion of poly (acrylic acid)/ laponite nanocomposite hydrogels as biocompatible adhesives. Langmuir 30(6), 1636–1642 (2014)

    Google Scholar 

  37. Kokabi, M.; Sirousazar, M.; Hassan, Z.M.: PVA–clay nanocomposite hydrogels for wound dressing. Eur. Polymer J. 43(3), 773–781 (2007)

    Google Scholar 

  38. Shanmugapriya, K.; Kim, H.; Saravana, P.S.; Chun, B.-S.; Kang, H.W.: Fabrication of multifunctional chitosan-based nanocomposite film with rapid healing and antibacterial effect for wound management. Int. J. Biol. Macromol. 118, 1713–1725 (2018)

    Google Scholar 

  39. Noori, S.; Kokabi, M.; Hassan, Z.: Poly (vinyl alcohol)/chitosan/honey/clay responsive nanocomposite hydrogel wound dressing. J. Appl. Polym. Sci. 135(21), 46311 (2018)

    Google Scholar 

  40. Sirousazar, M.; Jahani-Javanmardi, A.; Kheiri, F.; Hassan, Z.M.: In vitro and in vivo assays on egg white/polyvinyl alcohol/clay nanocomposite hydrogel wound dressings. J. Biomater. Sci. Polym. Ed. 27(16), 1569–1583 (2016)

    Google Scholar 

  41. Han, L.; Lu, X.; Liu, K.; Wang, K.; Fang, L.; Weng, L.-T., et al.: Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 11(3), 2561–2574 (2017)

    Google Scholar 

  42. Perioli, L.; Dorigato, A.; Pagano, C.; Leoni, M.; Pegoretti, A.: Thermo-mechanical and adhesive properties of polymeric films based on ZnAl-hydrotalcite composites for active wound dressings. Polym. Eng. Sci. 59(S1), E112–E119 (2019)

    Google Scholar 

  43. Zou, Q.; Cai, B.; Li, J.; Li, J.; Li, Y.: In vitro and in vivo evaluation of the chitosan/Tur composite film for wound healing applications. J. Biomater. Sci. Polym. Ed. 28(7), 601–615 (2017)

    Google Scholar 

  44. Wang, W Wang, A Nanoscale clay minerals for functional ecomaterials: fabrication, applications, and future trends. In: Handbook of Ecomaterials, pp. 1-82, Springer, (2019)

  45. Massaro, M.; Colletti, C.G.; Lazzara, G.; Riela, S.: The use of some clay minerals as natural resources for drug carrier applications. J. Funct. Biomater. 9(4), 58 (2018)

    Google Scholar 

  46. Sposito, G.; Skipper, N.T.; Sutton, R.; Park, S.-h; Soper, A.K.; Greathouse, J.A.: Surface geochemistry of the clay minerals. Proc. Nat. Acad. Sci. 96(7), 3358–3364 (1999)

    Google Scholar 

  47. Schaef, H.T.; Loganathan, N.; Bowers, G.M.; Kirkpatrick, R.J.; Yazaydin, A.O.; Burton, S.D., et al.: Tipping point for expansion of layered aluminosilicates in weakly polar solvents: supercritical CO2. ACS Appl. Mater. Interfaces 9(42), 36783–36791 (2017)

    Google Scholar 

  48. Vaiana CA: Bio-Functionalized Clay Nanoparticles for Wound Healing Applications: Wright State University (2011)

  49. Tamer, T.M.; Sabet, M.M.; Omer, A.M.; Abbas, E.; Eid, A.I.; Mohy-Eldin, M.S., et al.: Hemostatic and antibacterial PVA/Kaolin composite sponges loaded with penicillin–streptomycin for wound dressing applications. Sci. Rep. 11(1), 1–15 (2021)

    Google Scholar 

  50. Liu, M.; Shen, Y.; Ao, P.; Dai, L.; Liu, Z.; Zhou, C.: The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes. RSC Adv. 4(45), 23540–23553 (2014)

    Google Scholar 

  51. Haraguchi, K.: Nanocomposite hydrogels. Curr. Opin. Solid State Mater. Sci. 11(3–4), 47–54 (2007)

    Google Scholar 

  52. Pereira, A.G.; Rodrigues, F.H.; Paulino, A.T.; Martins, A.F.; Fajardo, A.R.: Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: a review. J. Clean. Prod. 284, 124 (2020)

    Google Scholar 

  53. Iliescu, R.I.; Andronescu, E.; Voicu, G.; Ficai, A.; Covaliu, C.I.: Hybrid materials based on montmorillonite and citostatic drugs: preparation and characterization. Appl. Clay Sci. 52(1–2), 62–68 (2011)

    Google Scholar 

  54. Suresh, R.; Borkar, S.; Sawant, V.; Shende, V.; Dimble, S.: Nanoclay drug delivery system. Int. J. Pharm. Sci. Nanotechnol. 3(2), 901–906 (2010)

    Google Scholar 

  55. Dabbaghianamiri M: Polymer/cay Nanocomposite Self-assembly for Gas Barrier Films Application: Texas State University (2017)

  56. Ahmad, N.H.; Mohamed, M.A.; Yusoff, S.F.M.: Improved adsorption performance of rubber-based hydrogel: optimisation through response surface methodology, isotherm, and kinetic studies. J. Sol-Gel Sci. Technol. 94(2), 322–334 (2020)

    Google Scholar 

  57. Khan, S.A.; Khan, T.A.: Clay-hydrogel nanocomposites for adsorptive amputation of contaminants from aqueous phase: a review. J. Environ. Chem. Eng. 9, 105 (2021)

    Google Scholar 

  58. Gaharwar, A.K.; Kishore, V.; Rivera, C.; Bullock, W.; Wu, C.J.; Akkus, O., et al.: Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differentiation of human mesenchymal stem cells. Macromol. Biosci. 12(6), 779–793 (2012)

    Google Scholar 

  59. Zhao, L.Z.; Zhou, C.H.; Wang, J.; Tong, D.S.; Yu, W.H.; Wang, H.: Recent advances in clay mineral-containing nanocomposite hydrogels. Soft Matter 11(48), 9229–9246 (2015)

    Google Scholar 

  60. Tavakoli, J.; Gascooke, J.; Xie, N.; Tang, B.Z.; Tang, Y.: Enlightening freeze–thaw process of physically cross-linked poly (vinyl alcohol) hydrogels by aggregation-induced emission fluorogens. ACS Appl. Polym. Mater. 1(6), 1390–1398 (2019)

    Google Scholar 

  61. Ibrahim, S.M.; El-Naggar, A.A.: Preparation of poly (vinyl alcohol)/clay hydrogel through freezing and thawing followed by electron beam irradiation for the treatment of wastewater. J. Thermoplast. Compos. Mater. 26(10), 1332–1348 (2013)

    Google Scholar 

  62. Wang, Y.; Qi, Y.; Chen, C.; Zhao, C.; Ma, Y.; Yang, W.: Layered Co-Immobilization of β-Glucosidase and Cellulase on Polymer Film by Visible-Light-Induced Graft Polymerization. ACS Appl. Mater. Interfaces. 11(47), 44913–44921 (2019)

    Google Scholar 

  63. Li, B.; Zhang, Y.; Wu, C.; Guo, B.; Luo, Z.: Fabrication of mechanically tough and self-recoverable nanocomposite hydrogels from polyacrylamide grafted cellulose nanocrystal and poly (acrylic acid). Carbohyd. Polym. 198, 1–8 (2018)

    Google Scholar 

  64. Sharma, G.; Thakur, B.; Naushad, M.; Kumar, A.; Stadler, F.J.; Alfadul, S.M., et al.: Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environ. Chem. Lett. 16(1), 113–146 (2018)

    Google Scholar 

  65. Ninan, N.; Muthiah, M.; Park, I.-K.; Wong, T.W.; Thomas, S.; Grohens, Y.: Natural polymer/inorganic material based hybrid scaffolds for skin wound healing. Polym. Rev. 55(3), 453–490 (2015)

    Google Scholar 

  66. Kim, Y.S.; Liu, M.; Ishida, Y.; Ebina, Y.; Osada, M.; Sasaki, T., et al.: Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 14(10), 1002–1007 (2015)

    Google Scholar 

  67. Sandri G Bonferoni M Rossi S Ferrari F Aguzzi C Viseras C et al: Clay minerals for tissue regeneration, repair, and engineering. Wound Healing Biomaterials, pp. 385-402, Elsevier, (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maedeh Dabbaghianamiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezanejad Gatabi, Z., Heshmati, N., Mirhoseini, M. et al. The Application of Clay-Based Nanocomposite Hydrogels in Wound Healing. Arab J Sci Eng 48, 8481–8494 (2023). https://doi.org/10.1007/s13369-022-06959-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06959-3

Keywords

Navigation