Skip to main content
Log in

Modeling and Simulation of Electrochemical Discharge Machining for Fabrication of Micro-Channel on Glass

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Electrochemical discharge machining (ECDM) has shown significant machining potential of micro- and nano-sized product components irrespective of nonconductivity of the material. However, the control of process parameters to obtain optimum process performance is still a challenge due to insufficient knowledge of the physics of the process. Therefore, a finite element study has been performed to explore the physics of the process and analyze the difference between experimental and simulation results with the help of COMSOL Multiphysics (v5.5). The effect of input parameters like applied voltage, electrolyte concentration, tool feed rate and pulse on time on process responses like material removal rate and width overcut has been explored in the present study. A novel approach in numerical simulation has been applied for micro-channel fabrication on glass. The simulation outcomes were compared and validated with experimental results. Simulation results exhibited good agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gao, S.; Huang, H.: Recent advances in micro- and nano-machining technologies. Front. Mech. Eng. 12, 18–32 (2017). https://doi.org/10.1007/s11465-017-0410-9

    Article  Google Scholar 

  2. Essa, K.; Modica, F.; Imbaby, M.; El-Sayed, M.A.; ElShaer, A.; Jiang, K.; Hassanin, H.: Manufacturing of metallic micro-components using hybrid soft lithography and micro-electrical discharge machining. Int. J. Adv. Manuf. Technol. 91, 445–452 (2017). https://doi.org/10.1007/s00170-016-9655-4

    Article  Google Scholar 

  3. Kumar, N.; Mandal, N.; Das, A.K.: Micro-machining through electrochemical discharge processes: a review. Mater. Manuf. Process. 35, 363–404 (2020). https://doi.org/10.1080/10426914.2020.1711922

    Article  Google Scholar 

  4. Ghosh, A.: Electrochemical discharge machining: principle and possibilities. Sadhana Acad. Proc. Eng. Sci. 22, 435–447 (1997). https://doi.org/10.1007/BF02744482

    Article  Google Scholar 

  5. Jain, V.K.; Choudhury, S.K.; Ramesh, K.M.: On the machining of alumina and glass. Int. J. Mach. Tools Manuf. 42, 1269–1276 (2002). https://doi.org/10.1016/S0032-3861(02)00241-0

    Article  Google Scholar 

  6. Gupta, P.K.; Dvivedi, A.; Kumar, P.: Effect of pulse duration on quality characteristics of blind hole drilled in glass by ECDM. Mater. Manuf. Process. 31, 1740–1748 (2016). https://doi.org/10.1080/10426914.2015.1103857

    Article  Google Scholar 

  7. McGeough, J.A.; Khayry, A.B.M.; Munro, W.; Crookall, J.R.: Theoretical and experimental investigation of the relative effects of spark erosion and electrochemical dissolution in electrochemical arc machining. CIRP Ann. Manuf. Technol. 32, 113–118 (1983). https://doi.org/10.1016/S0007-8506(07)63373-3

    Article  Google Scholar 

  8. Wüthrich, R.; Hof, L.A.: The gas film in spark assisted chemical engraving (SACE): a key element for micro-machining applications. Int. J. Mach. Tools Manuf. 46, 828–835 (2006). https://doi.org/10.1016/j.ijmachtools.2005.07.029

    Article  Google Scholar 

  9. Jiang, B.; Lan, S.; Wilt, K.; Ni, J.: Modeling and experimental investigation of gas film in micro-electrochemical discharge machining process. Int. J. Mach. Tools Manuf. 90, 8–15 (2015). https://doi.org/10.1016/j.ijmachtools.2014.11.006

    Article  Google Scholar 

  10. Kamaraj, A.B.; Jui, S.K.; Cai, Z.; Sundaram, M.M.: A mathematical model to predict overcut during electrochemical discharge machining. Int. J. Adv. Manuf. Technol. 81, 685–691 (2015). https://doi.org/10.1007/s00170-015-7208-x

    Article  Google Scholar 

  11. Jain, V.K.; Dixit, P.M.; Pandey, P.M.: On the analysis of the electrochemical spark machining process. Int. J. Mach. Tools Manuf. 39, 165–186 (1999). https://doi.org/10.1016/S0890-6955(98)00010-8

    Article  Google Scholar 

  12. Bhondwe, K.L.; Yadava, V.; Kathiresan, G.: Finite element prediction of material removal rate due to electro-chemical spark machining. Int. J. Mach. Tools Manuf. 46, 1699–1706 (2006). https://doi.org/10.1016/j.ijmachtools.2005.12.005

    Article  Google Scholar 

  13. Wei, C.; Xu, K.; Ni, J.; Brzezinski, A.J.; Hu, D.: A finite element based model for electrochemical discharge machining in discharge regime. Int. J. Adv. Manuf. Technol. 54, 987–995 (2011). https://doi.org/10.1007/s00170-010-3000-0

    Article  Google Scholar 

  14. Krötz, H.; Roth, R.; Wegener, K.: Experimental investigation and simulation of heat flux into metallic surfaces due to single discharges in micro-electrochemical arc machining (micro-ECAM). Int. J. Adv. Manuf. Technol. 68, 1267–1275 (2013). https://doi.org/10.1007/s00170-013-4918-9

    Article  Google Scholar 

  15. Jiang, B.; Lan, S.; Ni, J.; Zhang, Z.: Experimental investigation of spark generation in electrochemical discharge machining of non-conducting materials. J. Mater. Process. Technol. 214, 892–898 (2014). https://doi.org/10.1016/j.jmatprotec.2013.12.005

    Article  Google Scholar 

  16. Behroozfar, A.; Razfar, M.R.: Experimental and numerical study of material removal in electrochemical discharge machining (ECDM). Mater. Manuf. Process. 31, 495–503 (2016). https://doi.org/10.1080/10426914.2015.1058951

    Article  Google Scholar 

  17. Paul, L.; Korah, L.V.: Effect of power source in ECDM process with FEM modeling. Procedia Technol. 25, 1175–1181 (2016). https://doi.org/10.1016/j.protcy.2016.08.236

    Article  Google Scholar 

  18. Kolhekar, K.; Sundaram, M.: A multiphase simulation study of electrochemical discharge machining of glass. Int. J. Adv. Manuf. Technol. 105, 1597–1608 (2019). https://doi.org/10.1007/s00170-019-04318-5

    Article  Google Scholar 

  19. Goud, M.; Sharma, A.K.: A three-dimensional finite element simulation approach to analyze material removal in electrochemical discharge machining. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231, 2417–2428 (2017). https://doi.org/10.1177/0954406216636167

    Article  Google Scholar 

  20. Hajian, M.; Razfar, M.R.; Movahed, S.; Hemasian Etefagh, A.: Experimental and numerical investigations of machining depth for glass material in electrochemical discharge milling. Precis. Eng. 51, 521–528 (2018). https://doi.org/10.1016/j.precisioneng.2017.10.007

    Article  Google Scholar 

  21. Mishra, D.K.; Verma, A.K.; Arab, J.; Marla, D.; Dixit, P.: Numerical and experimental investigations into microchannel formation in glass substrate using electrochemical discharge machining. J. Micromech. Microeng. 29, 075004 (2019). https://doi.org/10.1088/1361-6439/ab1da7

    Article  Google Scholar 

  22. Mishra, D.K.; Arab, J.; Magar, Y.; Dixit, P.: High aspect ratio glass micromachining by multi-pass electrochemical discharge based micromilling technique. ECS J. Solid State Sci. Technol. 8, 322–331 (2019). https://doi.org/10.1149/2.0191906jss

    Article  Google Scholar 

  23. Arab, J.; Mishra, D.K.; Kannojia, H.K.; Adhale, P.; Dixit, P.: Fabrication of multiple through-holes in non-conductive materials by electrochemical discharge machining for RF MEMS packaging. J. Mater. Process. Technol. 271, 542–553 (2019). https://doi.org/10.1016/j.jmatprotec.2019.04.032

    Article  Google Scholar 

  24. Sharma, P.; Mishra, D.K.; Dixit, P.: Experimental investigations into alumina ceramic micromachining by electrochemical discharge machining process. Proc. Manuf. 48, 244–250 (2020). https://doi.org/10.1016/j.promfg.2020.05.044

    Article  Google Scholar 

  25. Rajput, V.; Goud, M.; Suri, N.M.: Finite element modeling for comparing the machining performance of different electrolytes in ECDM. Arab. J. Sci. Eng. 46, 2097–2119 (2021). https://doi.org/10.1007/s13369-020-05009-0

    Article  Google Scholar 

  26. Arab, J.; Mishra, D.K.; Dixit, P.: Role of tool-substrate gap in the micro-holes formation by electrochemical discharge machining. Procedia Manuf. 48, 492–497 (2020). https://doi.org/10.1016/j.promfg.2020.05.073

    Article  Google Scholar 

  27. Rajput, V.; Goud, M.; Suri, N.M.: Three-dimensional finite element modeling and response surface based multi-response optimization during silica drilling with closed-loop ECDM. SILICON 13, 3583–3609 (2021). https://doi.org/10.1007/s12633-020-00867-7

    Article  Google Scholar 

  28. Arab, J.; Mishra, D.K.; Dixit, P.: Measurement and analysis of the geometric characteristics of microholes and tool wear for varying tool-workpiece gaps in electrochemical discharge drilling. Meas. J. Int. Meas. Confed. 168, 108463 (2021). https://doi.org/10.1016/j.measurement.2020.108463

    Article  Google Scholar 

  29. Fascio, V.; Wüthrich, R.; Bleuler, H.: Spark assisted chemical engraving in the light of electrochemistry. Electrochim. Acta. 49, 3997–4003 (2004). https://doi.org/10.1016/j.electacta.2003.12.062

    Article  Google Scholar 

  30. Elhami, S.; Razfar, M.R.: Numerical and experimental study of discharge mechanism in the electrochemical discharge machining process. J. Manuf. Process. 50, 192–203 (2020). https://doi.org/10.1016/j.jmapro.2019.12.040

    Article  Google Scholar 

  31. Gupta, P.K.; Dvivedi, A.; Kumar, P.: Developments on electrochemical discharge machining: a review of experimental investigations on tool electrode process parameters. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 229, 910–920 (2015). https://doi.org/10.1177/0954405414534834

    Article  Google Scholar 

  32. Fascio, V.; Langen, H.H.; Bleuler, H.; Comninellis, C.: Investigations of the spark assisted chemical engraving. Electrochem. commun. 5, 203–207 (2003). https://doi.org/10.1016/S1388-2481(03)00018-3

    Article  Google Scholar 

  33. Singh, T.; Dvivedi, A.: Developments in electrochemical discharge machining: a review on electrochemical discharge machining, process variants and their hybrid methods. Int. J. Mach. Tools Manuf. 105, 1–13 (2016). https://doi.org/10.1016/j.ijmachtools.2016.03.004

    Article  Google Scholar 

  34. Comsol Multiphysics, https://www.comsol.co.in

  35. Gupta, P.K.: Ph.D. Thesis—Investigations on ECDM for subtractive microfabrication on glass, (2015)

  36. Verma, A.K.; Mishra, D.K.; Pawar, K.; Dixit, P.: Investigations into surface topography of glass microfeatures formed by pulsed electrochemical discharge milling for microsystem applications. Microsyst. Technol. 26, 2105–2116 (2020). https://doi.org/10.1007/s00542-020-04770-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahaveer Prasad Sharma.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M.P., Gupta, P.K. & Kumar, G. Modeling and Simulation of Electrochemical Discharge Machining for Fabrication of Micro-Channel on Glass. Arab J Sci Eng 48, 2701–2713 (2023). https://doi.org/10.1007/s13369-022-06944-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06944-w

Keywords

Navigation