Skip to main content
Log in

An Opposition-Based Hybrid Evolutionary Approach for Task Scheduling in Fog Computing Network

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The services generated by IoT devices have increased with the increasing demand and capabilities of IoT applications. Proximal fog computing networks efficiently facilitate the latency-sensitive services generated by these devices. A better scheduling technique can effectively minimize the service time of devices. Scheduling using an evolutionary method has been proved to be a better choice for service-time minimization. OBCR (opposition-based chemical reaction) method is developed for task scheduling in fog network by utilizing the features of heuristic upward ranking technique and CRO (chemical reaction optimization) technique with OBL (opposition-based learning). The use of OBL in OBCR results in a more diverse population and aids in escaping the local optima. OBCR uses four operators to provide better exploration and exploitation of the solution space. Furthermore, OBCR also improves the stability of these dynamic fog devices. Extensive simulations have demonstrated the better performance of the proposed OBCR technique compared to other techniques in terms of service-time latency and stability. It also has verified the importance of the technique for fog computing networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Publicly available data used.

Code Availability

Open-source software used.

References

  1. The Internet of Things - A movement not a market | IHS Markit. https://ihsmarkit.com/Info/1017/internet-of-things.html

  2. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S.: Fog computing and its role in the internet of things. In: MCC’12 - Proceedings of the 1st ACM Mobile Cloud Computing Workshop, pp. 13–15. ACM Press, (2012). https://doi.org/10.1145/2342509.2342513

  3. Liu, C.Y.; Zou, C.M.; Wu, P.: A task scheduling algorithm based on genetic algorithm and ant colony optimization in cloud computing. In: Proceedings - 13th international symposium on distributed computing and applications to business, engineering and science, DCABES 2014, pp. 68–72. Institute of Electrical and Electronics Engineers Inc., (2014). https://doi.org/10.1109/DCABES.2014.18

  4. Gharehchopogh, F.S.; Gholizadeh, H.: A comprehensive survey: whale optimization algorithm and its applications. Swarm Evol. Comput. 48, 1–24 (2019). https://doi.org/10.1016/j.swevo.2019.03.004

    Article  Google Scholar 

  5. Zhang, N.; Yang, X.; Zhang, M.; Sun, Y.; Long, K.: A genetic algorithm-based task scheduling for cloud resource crowd-funding model. Int. J. Commun. Syst. 31(1), 3394 (2018). https://doi.org/10.1002/dac.3394

    Article  Google Scholar 

  6. Attiya, G.; Hamam, Y.: Task allocation for maximizing reliability of distributed systems: a simulated annealing approach. J. Parallel Distrib. Comput. 66(10), 1259–1266 (2006). https://doi.org/10.1016/j.jpdc.2006.06.006

    Article  MATH  Google Scholar 

  7. Lam, A.Y.S.; Li, V.O.K.: Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans. Evol. Comput. 14(3), 381–399 (2010). https://doi.org/10.1109/TEVC.2009.2033580

    Article  Google Scholar 

  8. Duan, H.; Gan, L.: Elitist chemical reaction optimization for contour-based target recognition in aerial images. IEEE Trans. Geosci. Remote Sens. 53(5), 2845–2859 (2015). https://doi.org/10.1109/TGRS.2014.2365749

    Article  Google Scholar 

  9. Xu, J.; Lam, A.Y.S.; Li, V.O.K.: Chemical reaction optimization for task scheduling in grid computing. IEEE Trans. Parallel Distrib. Syst. 22(10), 1624–1631 (2011). https://doi.org/10.1109/TPDS.2011.35

    Article  Google Scholar 

  10. Nouioua, M.; Li, Z.: Using differential evolution strategies in chemical reaction optimization for global numerical optimization. Appl. Intell. 47(3), 935–961 (2017). https://doi.org/10.1007/s10489-017-0921-4

    Article  Google Scholar 

  11. Ewees, A.A.; Abd Elaziz, M.; Houssein, E.H.: Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst. Appl. 112, 156–172 (2018). https://doi.org/10.1016/j.eswa.2018.06.023

    Article  Google Scholar 

  12. Topcuoglu, H.; Hariri, S.: Min-You Wu: performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002). https://doi.org/10.1109/71.993206

    Article  Google Scholar 

  13. Ahandani, M..A.; Alavi-Rad, H.: Opposition-based learning in shuffled frog leaping: an application for parameter identification. Inf. Sci. 291(C), 19–42 (2015). https://doi.org/10.1016/j.ins.2014.08.031

    Article  Google Scholar 

  14. Deng, R.; Lu, R.; Lai, C.; Luan, T.H.; Liang, H.: Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet Things J. 3(6), 1171–1181 (2016). https://doi.org/10.1109/JIOT.2016.2565516

    Article  Google Scholar 

  15. Yin, L.; Luo, J.; Luo, H.: Tasks scheduling and resource allocation in fog computing based on containers for smart manufacture. IEEE Trans. Industr. Inf. 14(10), 4712–4721 (2018). https://doi.org/10.1109/TII.2018.2851241

    Article  Google Scholar 

  16. Li, L.; Guan, Q.; Jin, L.; Guo, M.: Resource allocation and task offloading for heterogeneous real-time tasks with uncertain duration time in a fog queueing system. IEEE Access 7, 9912–9925 (2019). https://doi.org/10.1109/ACCESS.2019.2891130

    Article  Google Scholar 

  17. Bitam, S.; Zeadally, S.; Mellouk, A.: Fog computing job scheduling optimization based on bees swarm. Enterprise Inform. Syst. 12, 373–397 (2018). https://doi.org/10.1080/17517575.2017.1304579

    Article  Google Scholar 

  18. Skarlat, O.; Nardelli, M.; Schulte, S.; Borkowski, M.; Leitner, P.: Optimized IoT service placement in the fog. SOCA 11, 427–443 (2017). https://doi.org/10.1007/s11761-017-0219-8

    Article  Google Scholar 

  19. Binh, H.T.T.; Anh, T.T.; Son, D.B.; Duc, P.A.; Nguyen, B.M.: An evolutionary algorithm for solving task scheduling problem in cloud-fog computing environment. In: ACM international conference proceeding series, pp. 397–404. Association for computing machinery, (2018). https://doi.org/10.1145/3287921.3287984

  20. Liu, Q.; Wei, Y.; Leng, S.; Chen, Y.: Task scheduling in fog enabled Internet of Things for smart cities. In: International conference on communication technology proceedings, ICCT, vol. 2017-October, pp. 975–980. Institute of Electrical and Electronics Engineers Inc., (2018). https://doi.org/10.1109/ICCT.2017.8359780

  21. Rahbari, D.; Nickray, M.: Scheduling of fog networks with optimized knapsack by symbiotic organisms search. In: Conference of open innovation association, FRUCT, pp. 278–283. IEEE Computer Society, (2018). https://doi.org/10.23919/FRUCT.2017.8250193

  22. Baniata, H.; Anaqreh, A.; Kertesz, A.: PF-BTS: a privacy-aware fog-enhanced blockchain-assisted task scheduling. Inform. Process. Manag. (2021). https://doi.org/10.1016/j.ipm.2020.102393

    Article  Google Scholar 

  23. Singh, S.P.; Nayyar, A.; Kaur, H.; Singla, A.: Dynamic task scheduling using balanced VM allocation policy for fog computing platforms. Scalable Comput. 20, 433–457 (2019). https://doi.org/10.12694/scpe.v20i2.1538

    Article  Google Scholar 

  24. Li, G.; Liu, Y.; Wu, J.; Lin, D.; Zhao, S.: Methods of resource scheduling based on optimized fuzzy clustering in fog computing. Sensors (2019). https://doi.org/10.3390/s19092122

    Article  Google Scholar 

  25. Potu, N.; Jatoth, C.; Parvataneni, P.: Optimizing resource scheduling based on extended particle swarm optimization in fog computing environments. Concurr. Computat. Pract. Exper. 6163, 1–13 (2021). https://doi.org/10.1002/cpe.6163

    Article  Google Scholar 

  26. Zhao, L.; Ren, Y.; Sakurai, K.: Reliable workflow scheduling with less resource redundancy. Parallel Comput. 39(10), 567–585 (2013). https://doi.org/10.1016/j.parco.2013.06.003

    Article  MathSciNet  Google Scholar 

  27. Li, Z.; Li, Y.; Yuan, T.; Chen, S.; Jiang, S.: Chemical reaction optimization for virtual machine placement in cloud computing. Appl. Intell. 49(1), 220–232 (2019). https://doi.org/10.1007/s10489-018-1264-5

    Article  Google Scholar 

  28. Zhao, L.; Ren, Y.; Xiang, Y.; Sakurai, K.: Fault-tolerant scheduling with dynamic number of replicas in heterogeneous systems, pp. 434–441. IEEE, (2010). https://doi.org/10.1109/HPCC.2010.72

  29. Tizhoosh, H.R.: Opposition-based learning: a new scheme for machine intelligence. In: Proceedings - international conference on computational intelligence for modelling, control and automation, CIMCA 2005 and International Conference on Intelligent Agents, Web Technologies and Internet, vol. 1, pp. 695–701 (2005). https://doi.org/10.1109/cimca.2005.1631345

  30. Mahdavi, S.; Rahnamayan, S.; Deb, K.: Opposition based learning: a literature review. Swarm Evol. Comput. 39, 1–23 (2018). https://doi.org/10.1016/j.swevo.2017.09.010

    Article  Google Scholar 

  31. Yadav, A.M.; Sharma, S.C.; Tripathi, K.N.: A two-step technique for effective scheduling in cloud-fog computing paradigm. In: Advances in Intelligent Systems and Computing, vol. 1086, pp. 367–379. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-1275-9_30

  32. Ye, S.; Ma, H.; Xu, S.; Yang, W.; Fei, M.: An effective fireworks algorithm for warehouse-scheduling problem. Trans. Inst. Meas. Control. 39(1), 75–85 (2017). https://doi.org/10.1177/0142331215600047

    Article  Google Scholar 

  33. Braekers, K.; Ramaekers, K.; Van Nieuwenhuyse, I.: The vehicle routing problem: state of the art classification and review. Comput. Ind. Eng. 99, 300–313 (2016). https://doi.org/10.1016/j.cie.2015.12.007

    Article  Google Scholar 

  34. Gupta, H.; Vahid Dastjerdi, A.; Ghosh, S.K.; Buyya, R.: iFogSim: a toolkit for modeling and simulation of resource management techniques in the Internet of Things, Edge and Fog computing environments. Software Pract. Exp. 47(9), 1275–1296 (2017). https://doi.org/10.1002/spe.2509

    Article  Google Scholar 

  35. Yeh, W.C.; Lai, C.M.; Tseng, K.C.: Fog computing task scheduling optimization based on multi-objective simplified swarm optimization. J. Phys.: Conf. Series (2019). https://doi.org/10.1088/1742-6596/1411/1/012007

    Article  Google Scholar 

  36. Meena, J.; Kumar, M.; Vardhan, M.: Cost effective genetic algorithm for workflow scheduling in cloud under deadline constraint. IEEE Access 4, 5065–5082 (2016). https://doi.org/10.1109/ACCESS.2016.2593903

    Article  Google Scholar 

  37. Gill, M.; Singh, D.: ACO based container placement for CaaS in fog computing. Proc. Comput. Sci. 167, 760–768 (2020). https://doi.org/10.1016/j.procs.2020.03.406

    Article  Google Scholar 

  38. Yadav, A.M.; Tripathi, K.N.; Sharma, S.C.: A bi - objective task scheduling approach in fog computing using hybrid fireworks algorithm. The J. Supercomput. (2021). https://doi.org/10.1007/s11227-021-04018-6

    Article  Google Scholar 

Download references

Funding

No funding information available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Mohan Yadav.

Ethics declarations

Conflict of interest

Authors do not have any conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.M., Tripathi, K.N. & Sharma, S.C. An Opposition-Based Hybrid Evolutionary Approach for Task Scheduling in Fog Computing Network. Arab J Sci Eng 48, 1547–1562 (2023). https://doi.org/10.1007/s13369-022-06918-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06918-y

Keywords

Navigation