Skip to main content
Log in

Remote Monitoring for Surface Roughness Based on Vibration and Spindle Power

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Surface roughness is an important feature of the product quality. In this paper, the function of ensuring workpiece processing quality and reducing the detection time of surface roughness is realized by remote monitoring surface roughness. The surface roughness is indirectly monitored by monitoring the spindle power, workpiece vibration, and cutting parameters. Using the method of support vector regression (SVR), four prediction models based on the X-, Y-, and Z-directions' vibration, spindle power, and cutting parameters are established through the comprehensive comparison of the five evaluation criteria. The prediction models based on the X-direction's vibration and spindle power are the best. A remote monitor system for surface roughness is established using the data acquisition unit, cloud servers, and client side to monitor the operation of the machine remotely. And when the surface roughness is abnormal, the remote alarm will be realized to facilitate timely inspection. Moreover, users can trace the defective parts by looking up the history. In this way we can find the source of abnormal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability and Material

All data generated or analyzed during this study are included in this published article.

References

  1. Şahinoğlu, A.; Rafighi, M.: Investigation of vibration, sound intensity, machine current and surface roughness values of AISI 4140 during machining on the lathe. Arab. J. Sci. Eng. 45, 765–778 (2020). https://doi.org/10.1007/s13369-019-04124-x

    Article  Google Scholar 

  2. Lu, C.; Ma, N.; Chen, Z.; Philippe, C.Z.: Pre-evaluationon surface profile in turning process based on cutting parameters. Int. J. Adv. Manuf. Technol. 49(5), 447–458 (2020). https://doi.org/10.1007/s00170-009-2417-9

    Article  Google Scholar 

  3. Lela, B.; Baji, D.; Jozi, S.: Regression analysis, support vector machines, and Bayesian neural network approaches to modeling surface roughness in face milling. Int. J. Adv. Manuf. Technol. 42(11–12), 1082–1088 (2009). https://doi.org/10.1007/s00170-008-1678-z

    Article  Google Scholar 

  4. Lin, Y.; Chen, Y.; Wu, K.; Hung, J.: Prediction of surface roughness based on the machining conditions with the effect of machining stability. Adv. Sci. Technol. Res. J. 14 (2),171–83 (2020). https://doi.org/10.12913/22998624/119048

  5. Mia, M.; Morshed, M.S.; Kharshiduzzaman, M.; Razi, M.H.; Mostafa, M.R.; Rahman, S.M.S.; Ahmad, I.; Hafiz, M.T.; Kamal, A.M.: Prediction and optimization of surface roughness in minimum quantity coolant lubrication applied turning of high hardness steel. Measurement 118, 43–51 (2018). https://doi.org/10.1016/j.measurement.2018.01.012

    Article  Google Scholar 

  6. Garcia Plaza, E.; Nunez Lopez, P.J.; Beamud Gonzalez, E.M.: Multi-sensor data fusion for real-time surface quality control in automated machining systems. Sensors 18(12), 4381 (2018). https://doi.org/10.3390/s18124381

    Article  Google Scholar 

  7. Lee, K.Y.; Kang, M.C.; Jeong, Y.H.: Simulation of surface roughness and profile in high-speed end milling. J. Mater. Process. Tech. 113(1–3), 410–415 (2001). https://doi.org/10.1016/S0924-0136(01)00697-5

    Article  Google Scholar 

  8. Kumar, S.; Park, H.S.; Nedelcu, D.: Development of real-time grinding process monitoring and analysis system. Int. J. Precis. Eng. Manuf. 22(8), 1345–1355 (2021). https://doi.org/10.1007/s12541-021-00539-5

    Article  Google Scholar 

  9. García Plaza, E.; Núñez López, P.J.: Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations. Mech. Syst. Signal. Process. 98, 902–919 (2018). https://doi.org/10.1016/j.ymssp.2017.05.028

    Article  Google Scholar 

  10. García Plaza, E.; Núñez López, P.J.; Beamud González, E.M.: Efficiency of vibration signal feature extraction for surface finish monitoring in CNC machining. J. Manuf. Process. 44, 145–157 (2019). https://doi.org/10.1016/j.jmapro.2019.05.046

    Article  Google Scholar 

  11. Zhuo, Y.; Han, Z.; An, D.; Jin, H.: Surface topography prediction in peripheral milling of thin-walled parts considering cutting vibration and material removal effect. Int. J. Mech. Sci. 211, 106797 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106797

    Article  Google Scholar 

  12. Pelayo, G.U.; Olvera-Trejo, D.; Luo, M.; de Lacalle, L.L.; Elías-Zuñiga, A.: Surface roughness prediction with new barrel-shape mills considering runout: Modelling and validation. Measurement 173, 108670 (2021). https://doi.org/10.1016/j.measurement.2020.108670

    Article  Google Scholar 

  13. Liu, Y.; Zhou, Z.; Fu, W.; Zhang, B.; Chang, F.; Jiang, P.: Study on the effect of cutting parameters on bamboo surface quality using response surface methodology. Measurement 174, 109002 (2021). https://doi.org/10.1016/j.measurement.2021.109002

    Article  Google Scholar 

  14. García Plaza, E.; Núñez López, P.J.: Surface roughness monitoring by singular spectrum analysis of vibration signals. Mech. Syst. Signal. Process. 84, 516–530 (2017). https://doi.org/10.1016/j.ymssp.2016.06.039

    Article  Google Scholar 

  15. Plaza, E.G.; López, P.N.: Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning. Mech. Syst. Signal Process. 98, 634–651 (2018). https://doi.org/10.1016/j.ymssp.2017.05.006

    Article  Google Scholar 

  16. Proteau, A.; Tahan, A.; Zemouri, R.; Thomas, M.: Predicting the quality of a machined workpiece with a variational autoencoder approach. J. Intell. Manuf. (2021). https://doi.org/10.1007/s10845-021-01822-y

    Article  Google Scholar 

  17. Lazoglu, I.: 3D surface topography analysis in 5-axis ball-end milling. CIRP Annals 66(1), 133–136 (2017). https://doi.org/10.1016/j.cirp.2017.04.021

    Article  Google Scholar 

  18. Urbikain, G.; Olvera, D.; de Lacalle, L.L.; Elías-Zúñiga, A.: Spindle speed variation technique in turning operations: modeling and real implementation. J. Sound Vibr. 383, 384–396 (2016). https://doi.org/10.1016/j.jsv.2016.07.033

    Article  Google Scholar 

  19. Zahoor, S.; Abdul-Kader, W.; Shehzad, A.; Habib, M.S.: Milling of Inconel 718: an experimental and integrated modeling approach for surface roughness. Int. J. Adv. Manuf. Technol. (2022). https://doi.org/10.1007/s00170-021-08648-1

    Article  Google Scholar 

  20. Szecsi, T.: Automatic cutting-tool condition monitoring on CNC lathes. J. Mater. Process. Technol. 77(1–3), 64–69 (1998). https://doi.org/10.1016/S0924-0136(97)00395-6

    Article  Google Scholar 

  21. Kucukyildiz, G.; Demir, H.G.: A multistage cutting tool fault diagnosis algorithm for the involute form cutter using cutting force and vibration signals spectrum imaging and convolutional neural networks. Arab. J. Sci. Eng. 46(12), 11819–11833 (2021). https://doi.org/10.1007/s13369-021-05709-1

    Article  Google Scholar 

  22. Ghosh, N.; Ravi, Y.B.; Patra, A.; Mukhopadhyay, S.; Paul, S.; Mohanty, A.R.; Chattopadhyay, A.B.: Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mech. Syst. Signal Process. 21(1), 466–479 (2007). https://doi.org/10.1016/j.ymssp.2005.10.010

    Article  Google Scholar 

  23. Yang, Y.; Hao, B.; Hao, X.; Li, L.; Chen, N.; Xu, T.; Aqib, K.M.; He, N.: A novel tool (single-flute) condition monitoring method for end milling process based on intelligent processing of milling force data by machine learning algorithms. Int. J. Precis. Eng. Manuf. 21(11), 2159–2171 (2020). https://doi.org/10.1007/s12541-020-00388-8

    Article  Google Scholar 

  24. Najm, S.M.; Paniti, I.: Predict the effects of forming tool characteristics on surface roughness of aluminum foil components formed by SPIF using ANN and SVR. Int. J. Precis. Eng. Manuf. 22(1), 13–26 (2020). https://doi.org/10.1007/s12541-020-00434-5

    Article  Google Scholar 

  25. Liu, L.; Zhang, X.; Wan, X.; Zhou, S.; Gao, Z.: Digital twin-driven surface roughness prediction and process parameter adaptive optimization. Adv. Eng. Inform. 51, 101470 (2022). https://doi.org/10.1016/j.aei.2021.101470

    Article  Google Scholar 

  26. Wang, Y.; Qin, B.; Liu, K.; Shen, M.; Niu, M.; Han, L.: A new multitask learning method for tool wear condition and part surface quality prediction. IEEE Trans. Ind. Inform. 17(9), 6023–6033 (2020)

    Article  Google Scholar 

  27. Chan, T.C.; Lin, H.H.; Reddy, S.V.V.S.: Prediction model of machining surface roughness for five-axis machine tool based on machine-tool structure performance. Int. J. Adv. Manuf. Technol. (2022). https://doi.org/10.1007/s00170-021-08634-7

    Article  Google Scholar 

  28. Rao, K.V.; Kumar, Y.P.; Singh, V.K.; Raju, L.S.; Ranganayakulu, J.: Vibration-based tool condition monitoring in milling of Ti-6Al-4V using an optimization model of GM (1, N) and SVM. Int. J. Adv. Manuf. Technol. 115(5), 1931–1941 (2021). https://doi.org/10.1007/s00170-021-07280-3

    Article  Google Scholar 

  29. Qian, N.; Wang, T.Y.; Lu, L.; Jiang, Y.: Research on CNC machine tools integration condition monitoring system and its information exchange technology. In: Lecture Notes in Electrical Engineering. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  30. Sun, I.C.; Chen, K.S.: Development of signal transmission and reduction modules for status monitoring and prediction of machine tools. In: 56th Annual conference of the society of instrument and control engineers of Japan (SICE), pp. 711–716 (2017). https://doi.org/10.23919/SICE.2017.8105459

  31. Chen, X.; Li, C.; Tang, Y.; Xiao, Q.: An Internet of Things based energy efficiency monitoring and management system for machining workshop. J. Clean. Prod. 199, 957–968 (2018). https://doi.org/10.1016/j.jclepro.2018.07.211

    Article  Google Scholar 

  32. De Lacalle, L.L.; Lamikiz, A.; Sánchez, J.A.; De Bustos, I.F.: Recording of real cutting forces along the milling of complex parts. Mechatronics 16(1), 21–32 (2006). https://doi.org/10.1016/j.mechatronics.2005.09.001

    Article  Google Scholar 

  33. de Lacalle, L.N.L.; Lamikiz, A.; Sanchez, J.A.; de Bustos, I.F.: Simultaneous measurement of forces and machine tool position for diagnostic of machining tests. IEEE Trans. Instrum. Meas. 54(6), 2329–2335 (2005)

    Article  Google Scholar 

Download references

Funding

This paper is sponsored by the “Technology of online monitoring system for thermal characteristics of NC machine tools” (No. H2019304021); the “Project funded of Shanghai science committee-Precision technology and its application for five-axis machine tool based on the real-time compensation” (NO. J16022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiguo Fan.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Fan, K. & Le, W. Remote Monitoring for Surface Roughness Based on Vibration and Spindle Power. Arab J Sci Eng 48, 2617–2631 (2023). https://doi.org/10.1007/s13369-022-06879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06879-2

Keywords

Navigation