Skip to main content
Log in

Experimental Analysis of Conjoint Effect of Semi-Cooled Exhaust Recirculation on Combustion of Liquid Phase Hydrocarbons Under Uniform Magnetic Fields

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the context of increasing the energy utilization of hastily depleting conventional hydrocarbon based fuels and regulating the associated emissions, the present experimental work investigates the conjoint effect of partially cooled exhaust gas recirculation on magnetic field-assisted combustion of gasoline in a multicylinder MPFI spark ignition engine. At the factory set ignition timing of 5 degree BTDC, an optimal mass of burnt gas (18%) within the tolerance limit of the engine determined through prior experiments is recirculated into the combustion chamber after partially cooling in a radiator assembly. The combustible charge which blends with the inert exhaust mixture is prepared from gasoline pretreated under a potent magnetic field generated using NdFeB rare earth magnets capable of enhancing the oxidation process. The intensity of applied magnetic field and the locus of magnetization are decided based on primal experiments. Combustion under the conjoint effect of the set modifications is studied in terms of fuel economy, thermal efficiency and regulated emissions of the engine in which significant improvement is noted. Cyclic variability in combustion is evaluated through the statistical analysis of COV of peak cylinder pressures and mean effective pressures which predicts reduction in probability of misfires. Experimental results portray an enhancement in fuel economy by 14.6% and reduction in cyclic variability by 11.56% under synergy of optimal recirculation and polarization when compared to baseline gasoline combustion and individual impact of recirculation of cooled exhaust gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

EGR:

Exhaust gas recirculation

COV:

Coefficient of variation

BP:

Brake power

BSFC:

Brake specific fuel consumption

BTE:

Brake thermal efficiency

CO:

Carbon monoxide

HC:

Unburned hydrocarbons

NOx:

Oxides of nitrogen

IMEP:

Indicated mean effective pressure

Pmax:

Peak cylinder pressure

CA:

Crank angle

References

  1. Abd-Alla, G.H.: Using exhaust gas recirculation in internal combustion engines: a review. Energy Conver. Manag. 43(8), 1027–1042 (2002)

    Article  Google Scholar 

  2. Alger, T.; Chauvet, T.; Dimitrova, Z.: Synergies between high EGR operation and GDI systems. SAE Int. J. Eng. 1(1), 101–114 (2009)

    Article  Google Scholar 

  3. Aoki, T.: Radicals’ emissions and butane diffusion flames exposed to upward-decreasing magnetic fields. Jpn. J. Appl. Phys. 28(5R), 776 (1989)

    Article  Google Scholar 

  4. Baker, J.; Saito, K.: Magnetocombustion: a thermodynamic analysis. J. Propul. Power 16(2), 263–268 (2000)

    Article  Google Scholar 

  5. Borovskoi, I.G.; Vorozhtsov, A.B.: Magnetic field control of burning rate and thrust in solid rocket motors. J. Propul. Power 11(4), 824–829 (1995)

    Article  Google Scholar 

  6. Božić, M.; Vučetić, A.; Kozarac, D.; Lulić, Z.: Experimental investigation on influence of EGR on combustion performance in SI engine. Stroke 2017, 85 (2000)

    Google Scholar 

  7. Brequigny, P.; Halter, F.; Mounaïm-Rousselle, C.; Dubois, T.: Fuel performances in spark-ignition (SI) engines: impact of flame stretch. Comb. Flame 166, 98–112 (2016)

    Article  Google Scholar 

  8. Brown, D.; Ma, B.-M.; Chen, Z.: Developments in the processing and properties of NdFeb-type permanent magnets. J. Magnet. Magnet. Mater. 248(3), 432–440 (2002)

    Article  Google Scholar 

  9. Ceviz, M.A.; Yüksel, F.: Cyclic variations on LPG and gasoline-fuelled lean burn SI engine. Renew. Energy 31(12), 1950–1960 (2006)

    Article  Google Scholar 

  10. Faris, A.S.; Al-Naseri, S.K.; Jamal, N.; Isse, R.; Abed, M.; Fouad, Z.; Kazim, A., et al.: Effects of magnetic field on fuel consumption and exhaust emissions in two-stroke engine. Energy Proc. 18, 327–338 (2012)

    Article  Google Scholar 

  11. El Fatih, F.; Saber, G.: Effect of fuel magnetism on engine performance and emissions. Aust. J. Basic Appl. Sci. 4(2), 6354–6358 (2010)

    Google Scholar 

  12. Fontana, G.; Galloni, E.: Experimental analysis of a spark-ignition engine using exhaust gas recycle at WOT operation. Appl. Energy 87(7), 2187–2193 (2010)

    Article  Google Scholar 

  13. Gillon, P., Khaldi, F., Gilard, V., Blanchard, J., Delmaere, T., Sarah, B.: Magnetic field influence on combustion. LCSR CNRS, IC Avenue de la Recherché Scientifique 189–194 (1997)

  14. Govindasamy, P., Dhandapani, S.: Performance and emissions achievements by magnetic energizer with a single cylinder two stroke catalytic coated spark ignition engine (2007).

  15. Haavisto, M.; Tuominen, S.; Santa-Nokki, T.; Kankaanpää, H.; Paju, M.; Ruuskanen, P.: Magnetic behavior of sintered NdFeB magnets on a long-term timescale. Adv. Mater. Sci. Eng. 2014, 1–7 (2014)

    Article  Google Scholar 

  16. Jothi, N.K.M.; Nagarajan, G.; Renganarayanan, S.: LPG fueled diesel engine using diethyl ether with exhaust gas recirculation. Int J Therm Sci 47(4), 450–457 (2008)

    Article  Google Scholar 

  17. Kristiantoro, T.; Idayanti, N.; Sudrajat, N.; Septiani, A.: Application of bonded NdFeB magnet for C-Band circulator component. J. Phys. Conf. Ser. 776(1), 012030 (2016)

    Article  Google Scholar 

  18. Kumar, P.V.; Patro, S.K.; Pudi, V.: Experimental study of a novel magnetic fuel ionization method in four stroke diesel engines. Int. J. Mech. Eng. Robot. Res. 3(1), 151–159 (2014)

    Google Scholar 

  19. Kurniawan, C.; Sholihat, H.; Thosin, K.A.Z.; Sardjono, P.: Effect of electrolyte composition on corrosion resistance in nickel plating process for coating bonded magnet PrFeB. Adv. Mater. Res. 896, 245–248 (2014)

    Article  Google Scholar 

  20. Mizutani, Y.; Fuchihata, M.; Ohkura, Y.: Pre-mixed laminar flames in a uniform magnetic field. Combust. Flame 125(1–2), 1071–1073 (2001)

    Article  Google Scholar 

  21. Morozov, Y.G.; Kuznetsov, M.V.: Effect of magnetic fields on combustion electromotive force. Combust. Expl. Shock Waves 35(1), 18–22 (1999)

    Article  Google Scholar 

  22. Oommen, L.P., Kumar, G.N.: Experimental studies on the influence of axial and radial fields of sintered neo-delta magnets in reforming the energy utilization combustion and emission properties of a hydrocarbon fuel. Energy Sour. A Recov. Util. Environ. Effects 1–21 (2020)

  23. Oommen, L.P., Kumar, G.N.: Experimental studies on the impact of part-cooled high pressure loop EGR on the combustion and emission characteristics of liquefied petroleum gas. J. Therm. Anal. Calorim. (2020).

  24. Oommen, L.P.; Kumar, G.N.: Assimilative capacity approach for air pollution control in automotive engines through magnetic field assisted combustion of hydrocarbons. Environ. Sci. Pollut. Res. 28, 4 (2021). https://doi.org/10.1007/s11356-020-11923-5

    Article  Google Scholar 

  25. Oommen, L.P.; Kumar, G.N.; Vijayalakshmi, S.K.: Experimental analysis of synergetic effect of part-cooled exhaust gas recirculation on magnetic field-assisted combustion of liquefied petroleum gas. Arab. J. Sci. Eng. 45, 1–10 (2020)

    Article  Google Scholar 

  26. Rakopoulos, C.D.; Rakopoulos, D.C.; Mavropoulos, G.C.; Kosmadakis, G.M.: Investigating the EGR rate and temperature impact on diesel engine combustion and emissions under various injection timings and loads by comprehensive two-zone modeling. Energy 157, 990–1014 (2018)

    Article  Google Scholar 

  27. Sahoo, R.R.; Jain, A.: Experimental analysis of nanofuel additives with magnetic fuel conditioning for diesel engine performance and emissions. Fuel 236, 365–372 (2019)

    Article  Google Scholar 

  28. Sankar, V., Chandran, S.M., Tomy, T., Raj, U., Samson, V., Ramachandran, K.: Effect of magnetic field to reduce emissions and improve combustion performance in a spark-ignition engine. In: Advanced manufacturing and materials science, pp. 1–10. Springer, Cham, (2018).

  29. Song, D., Jia, N., Guo, X., Ma, X., Ma, Z., Gao, D., Li, K., Lai, H., Zhang, C.: Low pressure cooled EGR for improved fuel economy on a turbocharged PFI gasoline engine. No. 2014-01-1240. SAE Technical Paper (2014).

  30. Ueno, S.; Harada, K.: Effect of magnetic fields on flames and gas flow. IEEE Trans Magnet 21, 5–7 (1985)

    Google Scholar 

  31. Ueno, S.; Harada, K.: Magnetic field effect on combustion. IEEE Trans Magnet 21, 2077–2079 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libin P. Oommen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oommen, L.P., Kumar, G.N. Experimental Analysis of Conjoint Effect of Semi-Cooled Exhaust Recirculation on Combustion of Liquid Phase Hydrocarbons Under Uniform Magnetic Fields. Arab J Sci Eng 47, 16049–16057 (2022). https://doi.org/10.1007/s13369-022-06842-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06842-1

Keywords

Navigation