Skip to main content
Log in

Synthesis of Cross-Linked Pyrazine-Based Polymers for Selective Removal of Mercury(II) Ions from Wastewater Solutions

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The study represents the synthesis and characterization of two new pyrazine-based polymers to remove mercury(II) ions from wastewater solutions. The polymers were synthesized via the polycondensation of 2,6-diaminopyrazine (MXR-1) or 2,3-diaminopyrazine (MXR-2) with terepthaldehyde and glacial acetic acid as a catalyst. The polymerization reactions revealed the formation of a polyamine (MXR-1) and a polyimine (MXR-2). The SEM–EDX analysis showed a sphere-like structure for MXR-1 with a surface area of 56 m2/g, whereas MXR-2 showed a sheet-like structure with a surface area of 26 m2/g, the higher surface area of MXR-1 showed better adsorption capacity compared to MXR-2. The efficiency of the new polymers was tested to remove mercury ions at low concentrations from wastewater solutions. The effect of concentration on the adsorption capacity of MXR-1 to mercury ions showed that the experimental data fitted both Langmuir and Freundlich isotherm models, indicating homogeneous and heterogenous adsorption, respectively, whereas MXR-2 fitted the Freundlich isotherm model. The effect of time on the adsorption capacity study revealed that the adsorption is chemisorption in nature by pseudo-second-order kinetic model for both MXR-1 and MXR-2 polymers. The thermodynamic properties revealed that the adsorption process is endothermic in nature. The new polymers were tested on spiked wastewater samples and showed the superiority of MXR-1 polymer over MXR-2 with higher efficiency in the removal of mercury from wastewater solutions with a 95% removal efficiency. The study reveals the potency of MXR-1 polymer as an adsorbent for wastewater purification.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahmad, M.; Wang, J.; Xu, J.; Yang, Z.; Zhang, Q.; Zhang, B.: Novel synthetic method for magnetic sulphonated tubular trap for efficient mercury removal from wastewater. J. Colloid Interface Sci. 565, 523–535 (2020). https://doi.org/10.1016/j.jcis.2020.01.024

    Article  Google Scholar 

  2. Ng, A.; Weerakoon, D.; Lim, E.; Padhye, L.P.: Fate of environmental pollutants. Water Environ. Res. 91(10), 1294–1325 (2019). https://doi.org/10.1002/wer.1225

    Article  Google Scholar 

  3. Hasanpour, M.; Hatami, M.: Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: a review study. Adv. Coll. Interface. Sci. 284, 102247 (2020). https://doi.org/10.1016/j.cis.2020.102247

    Article  Google Scholar 

  4. Leopold, K.; Foulkes, M.; Worsfold, P.: Methods for the determination and speciation of mercury in natural waters—a review. Anal. Chim. Acta 663(2), 127–138 (2010). https://doi.org/10.1016/j.aca.2010.01.048

    Article  Google Scholar 

  5. Kurwadkar, S.: Occurrence and distribution of organic and inorganic pollutants in groundwater. Water Environ. Res. 91(10), 1001–1008 (2019). https://doi.org/10.1002/wer.1166

    Article  Google Scholar 

  6. Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.B.; Streets, D.G.; Telmer, K.: Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 10(13), 5951–5964 (2010). https://doi.org/10.5194/acp-10-5951-2010

    Article  Google Scholar 

  7. Enrico, M.; Mere, A.; Zhou, H.; Loriau, M.; Tessier, E.; Bouyssiere, B.: Methods for total and speciation analysis of mercury in the petroleum industry. Energy Fuels 34(11), 13307–13320 (2020). https://doi.org/10.1021/acs.energyfuels.0c02730

    Article  Google Scholar 

  8. Davidson, P.W.; Cory-Slechta, D.A.; Thurston, S.W.; Huang, L.-S.; Shamlaye, C.F.; Gunzler, D.; Watson, G.; van Wijngaarden, E.; Zareba, G.; Klein, J.D.; Clarkson, T.W.; Strain, J.J.; Myers, G.J.: Fish consumption and prenatal methylmercury exposure: cognitive and behavioral outcomes in the main cohort at 17 years from the Seychelles child development study. Neurotoxicology 32(6), 711–717 (2011). https://doi.org/10.1016/j.neuro.2011.08.003

    Article  Google Scholar 

  9. tv1`Stokes-Riner, A., Thurston, S.W., J. Myers, G., Duffy, E.M., Wallace, J., Bonham, M., Robson, P., Shamlaye, C.F., Strain, J.J., Watson, G., Davidson, P.W.: A longitudinal analysis of prenatal exposure to methylmercury and fatty acids in the Seychelles. Neurotoxicol. Teratol. 33(2), 325–328 (2011). https://doi.org/10.1016/j.ntt.2010.11.003

  10. Furieri, L.B.; Fioresi, M.; Junior, R.F.R.; Bartolomé, M.V.; Fernandes, A.A.; Cachofeiro, V.; Lahera, V.; Salaices, M.; Stefanon, I.; Vassallo, D.V.: Exposure to low mercury concentration in vivo impairs myocardial contractile function. Toxicol. Appl. Pharmacol. 255(2), 193–199 (2011). https://doi.org/10.1016/j.taap.2011.06.015

    Article  Google Scholar 

  11. Ramezani, M.S.; Ozdemir, J.; Khosropour, A.R.; Beyzavi, H.: Sulfur-decorated hyper-cross-linked coal tar: a microporous organic polymer for efficient and expeditious mercury removal. ACS Appl. Mater. Interfaces 12(39), 44117–44124 (2020). https://doi.org/10.1021/acsami.0c10617

    Article  Google Scholar 

  12. Štandeker, S.; Veronovski, A.; Novak, Z.; Knez, Ž: Silica aerogels modified with mercapto functional groups used for Cu(II) and Hg(II) removal from aqueous solutions. Desalination 269(1), 223–230 (2011). https://doi.org/10.1016/j.desal.2010.10.064

    Article  Google Scholar 

  13. Bibby, A.; Mercier, L.: Mercury(II) ion adsorption behavior in thiol-functionalized mesoporous silica microspheres. Chem. Mater. 14(4), 1591–1597 (2002). https://doi.org/10.1021/cm0112082

    Article  Google Scholar 

  14. Khajeh, M.; Laurent, S.; Dastafkan, K.: Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem. Rev. 113(10), 7728–7768 (2013). https://doi.org/10.1021/cr400086v

    Article  Google Scholar 

  15. Ramalingam, B.; Parandhaman, T.; Choudhary, P.; Das, S.K.: Biomaterial functionalized graphene-magnetite nanocomposite: a novel approach for simultaneous removal of anionic dyes and heavy-metal ions. ACS Sustain. Chem. Eng. 6(5), 6328–6341 (2018). https://doi.org/10.1021/acssuschemeng.8b00139

    Article  Google Scholar 

  16. Zeng, H.; Wang, L.; Zhang, D.; Wang, F.; Sharma, V.K.; Wang, C.: Amido-functionalized carboxymethyl chitosan/montmorillonite composite for highly efficient and cost-effective mercury removal from aqueous solution. J. Colloid Interface Sci. 554, 479–487 (2019). https://doi.org/10.1016/j.jcis.2019.07.029

    Article  Google Scholar 

  17. Adly, M.S.; El-Dafrawy, S.M.; Ibrahim, A.A.; El-Hakam, S.A.; El-Shall, M.S.: Efficient removal of heavy metals from polluted water with high selectivity for Hg(ii) and Pb(ii) by a 2-imino-4-thiobiuret chemically modified MIL-125 metal–organic framework. RSC Adv. 11(23), 13940–13950 (2021). https://doi.org/10.1039/D1RA00927C

    Article  Google Scholar 

  18. Awad, F.S.; Bakry, A.M.; Ibrahim, A.A.; Lin, A.; El-Shall, M.S.: Thiol- and amine-incorporated UIO-66-NH2 as an efficient adsorbent for the removal of Mercury(II) and phosphate ions from aqueous solutions. Ind. Eng. Chem. Res. 60(34), 12675–12688 (2021). https://doi.org/10.1021/acs.iecr.1c01892

    Article  Google Scholar 

  19. Foroutan, R.; Peighambardoust, S.J.; Ahmadi, A.; Akbari, A.; Farjadfard, S.; Ramavandi, B.: Adsorption mercury, cobalt, and nickel with a reclaimable and magnetic composite of hydroxyapatite/Fe3O4/polydopamine. J. Environ. Chem. Eng. 9(4), 105709 (2021). https://doi.org/10.1016/j.jece.2021.105709

    Article  Google Scholar 

  20. Sang, Y.; Cao, Y.; Wang, L.; Yan, W.; Chen, T.; Huang, J.; Liu, Y.-N.: N-rich porous organic polymers based on Schiff base reaction for CO2 capture and mercury(II) adsorption. J. Colloid Interface Sci. 587, 121–130 (2021). https://doi.org/10.1016/j.jcis.2020.12.002

    Article  Google Scholar 

  21. Tan, M.X.; Sum, Y.N.; Ying, J.Y.; Zhang, Y.: A mesoporous poly-melamine-formaldehyde polymer as a solid sorbent for toxic metal removal. Energy Environ. Sci. 6(11), 3254–3259 (2013). https://doi.org/10.1039/C3EE42216J

    Article  Google Scholar 

  22. Ryu, J.; Lee, M.Y.; Song, M.G.; Baeck, S.-H.; Shim, S.E.; Qian, Y.: Highly selective removal of Hg(II) ions from aqueous solution using thiol-modified porous polyaminal-networked polymer. Sep. Purif. Technol. 250, 117120 (2020). https://doi.org/10.1016/j.seppur.2020.117120

    Article  Google Scholar 

  23. Denizli, A.; Kesenci, K.; Arica, Y.; Pişkin, E.: Dithiocarbamate-incorporated monosize polystyrene microspheres for selective removal of mercury ions. React. Funct. Polym. 44(3), 235–243 (2000). https://doi.org/10.1016/S1381-5148(99)00099-1

    Article  Google Scholar 

  24. Shen, J.; Ren, C.; Zeng, H.: Surprisingly high selectivity and high affinity in mercury recognition by H-bonded cavity-containing aromatic foldarands. J. Am. Chem. Soc. 139(15), 5387–5396 (2017). https://doi.org/10.1021/jacs.6b13342

    Article  Google Scholar 

  25. Suriyakumar, S.; Bhardwaj, P.; Grace, A.N.; Stephan, A.M.: Role of polymers in enhancing the performance of electrochemical supercapacitors: a review. Batteries Supercaps 4(4), 571–584 (2021). https://doi.org/10.1002/batt.202000272

    Article  Google Scholar 

  26. Meng, L.; Ren, S.; Ma, C.; Yu, Y.; Lou, Y.; Zhang, D.; Shi, Z.: Synthesis of a 2D nitrogen-rich π-conjugated microporous polymer for high performance lithium-ion batteries. Chem. Commun. 55(64), 9491–9494 (2019). https://doi.org/10.1039/C9CC04036F

    Article  Google Scholar 

  27. Yang, L.; Cui, X.; Yang, Q.; Qian, S.; Wu, H.; Bao, Z.; Zhang, Z.; Ren, Q.; Zhou, W.; Chen, B.; Xing, H.: A single-molecule propyne trap: highly efficient removal of propyne from propylene with anion-pillared ultramicroporous materials. Adv. Mater. 30(10), 1705374 (2018). https://doi.org/10.1002/adma.201705374

    Article  Google Scholar 

  28. Etaiw, S.E.-d.H., Marie, H., Shalaby, E.M., Farag, R.S., Elsharqawy, F.A.: Sensing and photocatalytic properties of nanosized Cu(I)CN organotin supramolecular coordination polymer based on pyrazine. Appl. Organomet. Chem. 33(9), e5114 (2019). https://doi.org/10.1002/aoc.5114

  29. Skorjanc, T.; Shetty, D.; Valant, M.: Covalent organic polymers and frameworks for fluorescence-based sensors. ACS Sensors 6(4), 1461–1481 (2021). https://doi.org/10.1021/acssensors.1c00183

    Article  Google Scholar 

  30. Palani, P.; Karpagam, S.: Conjugated polymers—a versatile platform for various photophysical, electrochemical and biomedical applications: a comprehensive review. New J. Chem. 45(41), 19182–19209 (2021). https://doi.org/10.1039/D1NJ04062F

    Article  Google Scholar 

  31. Fayazi, M.; Taher, M.A.; Afzali, D.; Mostafavi, A.; Ghanei-Motlagh, M.: Synthesis and application of novel ion-imprinted polymer coated magnetic multi-walled carbon nanotubes for selective solid phase extraction of lead(II) ions. Mater. Sci. Eng. C 60, 365–373 (2016). https://doi.org/10.1016/j.msec.2015.11.060

    Article  Google Scholar 

  32. Hou, Y.; Masoomi, M.Y.; Bagheri, M.; Morsali, A.; Joo, S.W.: Two reversible transformable mercury(II) coordination polymers as efficient adsorbents for removal of dibenzothiophene. RSC Adv. 5(99), 81356–81361 (2015). https://doi.org/10.1039/C5RA12686J

    Article  Google Scholar 

  33. Lohse, M.S.; Bein, T.: Covalent organic frameworks: structures, synthesis, and applications. Adv. Funct. Mater. 28(33), 1705553 (2018). https://doi.org/10.1002/adfm.201705553

    Article  Google Scholar 

  34. Manzar, M.S., Haladu, S.A., Zubair, M., Mu'azu, N.D., Qureshi, A., Blaisi, N.I., Garrison, T.F., Al Hamouz, O.C.S.: Synthesis and characterization of a series of cross-linked polyamines for removal of Erichrome Black T from aqueous solution. Chin. J. Chem. Eng. 32, 341–352 (2021). https://doi.org/10.1016/j.cjche.2020.09.052

  35. Zeng, H.; Wang, L.; Zhang, D.; Yan, P.; Nie, J.; Sharma, V.K.; Wang, C.: Highly efficient and selective removal of mercury ions using hyperbranched polyethylenimine functionalized carboxymethyl chitosan composite adsorbent. Chem. Eng. J. 358, 253–263 (2019). https://doi.org/10.1016/j.cej.2018.10.001

    Article  Google Scholar 

  36. Abdelnaby, M.M., Cordova, K.E., Abdulazeez, I., Alloush, A.M., Al-Maythalony, B.A., Mankour, Y., Alhooshani, K., Saleh, T.A., Al Hamouz, O.C.S.: Novel porous organic polymer for the concurrent and selective removal of hydrogen sulfide and carbon dioxide from natural gas streams. ACS Appl. Mater. Interfaces 12(42), 47984–47992 (2020). https://doi.org/10.1021/acsami.0c14259

  37. Zhong, J.; Wang, B.; Sun, K.; Duan, J.: Hyperbranched polyethylenimine–based polymeric nanoparticles: synthesis, properties, and an application in selective response to copper ion. Colloid Polym. Sci. 299(10), 1577–1586 (2021). https://doi.org/10.1007/s00396-021-04885-8

    Article  Google Scholar 

  38. Englert, C.; Tauhardt, L.; Hartlieb, M.; Kempe, K.; Gottschaldt, M.; Schubert, U.S.: Linear poly(ethylene imine)-based hydrogels for effective binding and release of DNA. Biomacromol 15(4), 1124–1131 (2014). https://doi.org/10.1021/bm4017572

    Article  Google Scholar 

  39. Chaudhuri, H.; Gupta, R.; Dash, S.: Efficient synthesis of branched polyamine based thermally stable heterogeneous catalyst for knoevenagel condensation at room temperature. Catal. Lett. 148(6), 1703–1713 (2018). https://doi.org/10.1007/s10562-018-2368-6

    Article  Google Scholar 

  40. Tarase, M.V.; Zade, A.B.; Gurnule, W.B.: Kinetics of thermal degradation studies of some new terpolymers derived from 2,4-dihydroxypropiophenone, oxamide, and formaldehyde. J. Appl. Polym. Sci. 116(2), 619–627 (2010). https://doi.org/10.1002/app.30844

    Article  Google Scholar 

  41. Alloush, A.M., Abdelnaby, M.M., Cordova, K.E., Qasem, N.A.A., Al-Maythalony, B.A., Jalilov, A., Mankour, Y., Al Hamouz, O.C.S.: Selectively capturing carbon dioxide from mixed gas streams using a new microporous organic copolymer. Microp. Mesop. Mater. 305, 110391 (2020). https://doi.org/10.1016/j.micromeso.2020.110391

  42. Wang, J.; Deng, B.; Chen, H.; Wang, X.; Zheng, J.: Removal of aqueous Hg(II) by polyaniline: sorption characteristics and mechanisms. Environ. Sci. Technol. 43(14), 5223–5228 (2009). https://doi.org/10.1021/es803710k

    Article  Google Scholar 

  43. Foti, C.; Giuffrè, O.; Lando, G.; Sammartano, S.: Interaction of inorganic Mercury(II) with polyamines, polycarboxylates, and amino acids. J. Chem. Eng. Data 54(3), 893–903 (2009). https://doi.org/10.1021/je800685c

    Article  Google Scholar 

  44. Liu, J., Ma, Y., Zhang, Y., Shao, G.: Novel negatively charged hybrids. 3. Removal of Pb2+ from aqueous solution using zwitterionic hybrid polymers as adsorbent. J. Hazard. Mater. 173, 438–444 (2010). https://doi.org/10.1016/j.jhazmat.2009.08.097

  45. Minceva, M., Markovska, L., Meshko, V.: Removal of Zn2+, Cd2+, and Pb2+ from binary aqueous solution by natural zeolite and granulated activated carbon. Maced. J. Chem. Chem. Eng. 26, 125–134 (2007).

  46. Wang, X.S., Miao, H.H., He, W., Shen, H.L.: Competitive adsorption of Pb(II), Cu(II), and Cd(II) ions on wheat-residue derived black carbon. J. Chem. Eng. Data 56, 444–449 (2011). https://doi.org/10.1021/je101079w

  47. Boparai, H.K., Joseph, M., O'Carroll, D.M.: Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186, 458–465 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.029

  48. Mohapatra, M., Rout, K., Mohapatra, B.K., Anand, S.: Sorption behavior of Pb(II) and Cd(II) on iron ore slime and characterization of metal ion loaded sorbent. J. Hazard. Mater. 166, 1506–1513 (2009).

  49. Ozcan, A., Ozcan, A.S., Gok, O.: Adsorption kinetics and isotherms of anionic dye of Reactive Blue 19 from aqueous solutions onto DTMA-sepiolite. In: 2007, pp. 225–249. Nova Science Publishers, Inc.

  50. Wu, F.C.; Tseng, R.L.; Juang, R.S.: Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 153(1–3), 1–8 (2009)

    Google Scholar 

  51. Al-Yaari, M.; Saleh, T.A.; Saber, O.: Removal of mercury from polluted water by a novel composite of polymer carbon nanofiber: kinetic, isotherm, and thermodynamic studies. RSC Adv. 11(1), 380–389 (2021). https://doi.org/10.1039/D0RA08882J

    Article  Google Scholar 

  52. Al-Ghouti, M.A.; Da’ana, D.; Abu-Dieyeh, M.; Khraisheh, M.: Adsorptive removal of mercury from water by adsorbents derived from date pits. Sci. Rep. 9(1), 15327 (2019). https://doi.org/10.1038/s41598-019-51594-y

    Article  Google Scholar 

  53. Cao, R.; Fan, M.; Hu, J.; Ruan, W.; Xiong, K.; Wei, X.: Optimizing low-concentration mercury removal from aqueous solutions by reduced graphene oxide-supported Fe3O4 composites with the aid of an artificial neural network and genetic algorithm. Materials (Basel) 10(11), 1279 (2017). https://doi.org/10.3390/ma10111279

    Article  Google Scholar 

  54. Luo, F.; Chen, J.L.; Dang, L.L.; Zhou, W.N.; Lin, H.L.; Li, J.Q.; Liu, S.J.; Luo, M.B.: High-performance Hg2+ removal from ultra-low-concentration aqueous solution using both acylamide- and hydroxyl-functionalized metal–organic framework. J. Mater. Chem. A 3(18), 9616–9620 (2015). https://doi.org/10.1039/C5TA01669J

    Article  Google Scholar 

  55. Girginova, P.I.; Daniel-da-Silva, A.L.; Lopes, C.B.; Figueira, P.; Otero, M.; Amaral, V.S.; Pereira, E.; Trindade, T.: Silica coated magnetite particles for magnetic removal of Hg2+ from water. J. Colloid Interface Sci. 345(2), 234–240 (2010). https://doi.org/10.1016/j.jcis.2010.01.087

    Article  Google Scholar 

  56. Looney, B.B.; Denham, M.E.; Vangelas, K.M.; Bloom, N.S.: Removal of mercury from low-concentration aqueous streams using chemical reduction and air stripping. J. Environ. Eng. 129(9), 819–825 (2003). https://doi.org/10.1061/(ASCE)0733-9372(2003)129:9(819)

    Article  Google Scholar 

  57. Xiong, Y.Y.; Li, J.Q.; Gong, L.L.; Feng, X.F.; Meng, L.N.; Zhang, L.; Meng, P.P.; Luo, M.B.; Luo, F.: Using MOF-74 for Hg2+ removal from ultra-low concentration aqueous solution. J. Solid State Chem. 246, 16–22 (2017). https://doi.org/10.1016/j.jssc.2016.10.018

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support provided by Chemistry Department, King Fahd University of Petroleum and Minerals.

Author information

Authors and Affiliations

Authors

Contributions

Rakan AlRashidi was involved methodology of the work, investigation, formal analysis, resources, and software. Othman Charles S. Al Hamouz helped in visualization, supervision, investigation, and writing—review and editing.

Corresponding author

Correspondence to Othman Charles S. Al Hamouz.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlRashidi, R.B., Al Hamouz, O.C.S. Synthesis of Cross-Linked Pyrazine-Based Polymers for Selective Removal of Mercury(II) Ions from Wastewater Solutions. Arab J Sci Eng 47, 7207–7218 (2022). https://doi.org/10.1007/s13369-022-06833-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06833-2

Keywords

Navigation