Skip to main content

Advertisement

Log in

Overcurrent Protection Circuit for Engine Starting Mode of Range Extended Electric Vehicles

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Apart from the various technical issues, voltage and current spikes have always been the challenges of vehicular circuit designers. This paper presents a protection scheme against the possible damaging effects of an overcurrent phenomenon. The proposed circuit is capable of continuously measuring the magnitude of phase current through the motor windings, and compares the same with the predefined reference current. Depending on the comparison, it generates a signal and sends the same to the microcontroller and the dedicated IR3230 Brushless DC controller for protection. The functionality of the proposed scheme was supported with experimental validations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Khaligh, A.; Member, S.; Li, Z.; Member, S.: Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the Art. IEEE Trans. Veh. Technol. 59(6), 2806–2814 (2010)

    Article  Google Scholar 

  2. Ambaripeta, H.P.; Sozer, Y.; Husain, I.: Engine-generator sizing for re-engineering an electric vehicle into an extended range electric vehicle. In: 2013 IEEE Energy Convers. Congr. Expo. ECCE 2013, pp. 649–656 (2013). https://doi.org/10.1109/ECCE.2013.6646763

  3. Salmasi, F.R.: Control strategies for hybrid electric vehicles: evolution, classification, comparison, and future trends. IEEE Trans. Veh. Technol. 56(5), 2393–2404 (2007). https://doi.org/10.1109/TVT.2007.899933

    Article  Google Scholar 

  4. Zhang, T.; Chen, W.; Han, Z.; Cao, Z.: Charging scheduling of electric vehicles with local renewable energy under uncertain electric vehicle arrival and grid power price. IEEE Trans. Veh. Technol. 63(6), 2600–2612 (2014). https://doi.org/10.1109/TVT.2013.2295591

    Article  Google Scholar 

  5. Wirasingha, S.G.; Emadi, A.: Classification and review of control strategies for plug-in hybrid electric vehicles. IEEE Trans. Veh. Technol. 60(1), 111–122 (2011). https://doi.org/10.1109/TVT.2010.2090178

    Article  Google Scholar 

  6. Raghavan, S.S.; Khaligh, A.: Electrification potential factor: energy-based value proposition analysis of plug-in hybrid electric Vehicles. IEEE Trans. Veh. Technol. 61(3), 1052–1059 (2012). https://doi.org/10.1109/TVT.2011.2181438

    Article  Google Scholar 

  7. Schofield, N.; Al-Adsani, A.S. Operation of a hybrid PM generator in a series hybrid electrical vehicle. In: IECON Proc. (Industrial Electron. Conf., pp. 3898–3903 (2009). https://doi.org/10.1109/IECON.2009.5415350.

  8. Dickinson, D.; Mounir, N. Range extender vehicle concept based on high temperature polymer electrolyte membrane fuel cell. In: IEEE, 2014 Ninth Int. Conf. Ecol. Veh. Renew. Energies 5EVER), pp. 1–7 (2014)

  9. Bassett, M.; Hall, J.; Warth, M. Development of a dedicated range extender unit and demonstration vehicle. In: IEEE, EVS27 Int. Batter. Hybrid Fuel Cell Electr. Veh. Symp., pp. 1–11 (2013). https://doi.org/10.1109/EVS.2013.6914833.

  10. Gebrehiwot, M.; Van Den, B.A.: Starting requirements of a range extender for electric vehicles: based on a small size 4-stroke engine. Int. J. Automot. Technol. 16(4), 707–7013 (2015). https://doi.org/10.1007/s12239−015−0071−9

    Article  Google Scholar 

  11. Wu, D.; Feng, L.: On-off control of range extender in extended- range electric vehicle using bird swarm intelligence. Electron (2019). https://doi.org/10.3390/electronics8111223

    Article  Google Scholar 

  12. Nian, X.; Peng, F.; Zhang, H.: Regenerative braking system of electric vehicle driven by brushless DC motor. IEEE Trans. Ind. Electron. 61(10), 5798–5808 (2014). https://doi.org/10.1109/TIE.2014.2300059

    Article  Google Scholar 

  13. Yang, M.J.; Jhou, H.L.; Ma, B.Y.; Shyu, K.K.: A cost-effective method of electric brake with energy regeneration for electric vehicles. IEEE Trans. Ind. Electron. 56(6), 2203–2212 (2009). https://doi.org/10.1109/TIE.2009.2015356

    Article  Google Scholar 

  14. Choi, J.; Park, J.S.; Kim, J.; Jung, I.; Member, S. Control scheme for efficiency improvement of slim type BLDC motor. In: IEEE, 2014 Int. Symp. Power Electron. Electr. Drives, Autom. Motion, No. 2, pp. 820–824 (2014)

  15. Yang, F.; Jiang, C.; Taylor, A.; Bai, K.H.; Kotrba, A.; Yetkin, A.; Gundogan, A.: Design of a high-efficiency 12V/1kW 3-phase BLDC motor drive system for diesel engine emissions reductions. IEEE Trans. Veh. Technol. 63(7), 3107–3115 (2014). https://doi.org/10.1109/ECCE.2013.6646823

    Article  Google Scholar 

  16. Fang, J.; Li, W.; Li, H.; Xu, X.: Online inverter fault diagnosis of buck-converter BLDC motor combinations. IEEE Trans. Power Electron. 30(5), 2674–2688 (2015). https://doi.org/10.1109/TPEL.2014.2330420

    Article  Google Scholar 

  17. Tran, T.V.; Nègre, E.: Efficient estimator of rotor temperature designing for electric and hybrid powertrain platform. Electronics 9(7), 1–12 (2020). https://doi.org/10.3390/electronics9071096

    Article  Google Scholar 

  18. Joostberens, J.; Heyduk, A.; Boron, S.; Bauerek, A.: Optimal selection of time-current characteristic of overcurrent protection for induction motors in drives of mining machines with prolonged starting time. Energies (2020). https://doi.org/10.3390/en13174466

    Article  Google Scholar 

  19. Acarnley, P.P. Current measurement in three-phase brushless. In: IEE Proceedings; IEEE, pp. 71–79 (1993)

  20. Chau, K.T.; Chan, C.C.; Liu, C.: Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Trans. Ind. Electron. 55(6), 2246–2257 (2008). https://doi.org/10.1109/TIE.2008.918403

    Article  Google Scholar 

  21. Hasan, S.M.N.; Husain, I.; Veillette, R.J.; Carletta, J.E.: A PM brushless DC starter/generator system for a series-parallel 2×2 hybrid electric vehicle. In: 2007 IEEE Industry Applications Annual Meeting, pp. 1686–1693 (2007). https://doi.org/10.1109/IAS.2007.259

  22. Jensen, H.C.B.; Schaltz, E.; Koustrup, P.S.; Andreasen, S.J.; Kær, S.K.: Evaluation of fuel-cell range extender impact on hybrid electrical vehicle performance. IEEE Trans. Veh. Technol. 62(1), 50–60 (2013). https://doi.org/10.1109/TVT.2012.2218840

    Article  Google Scholar 

  23. Joice, C.S.; Paranjothi, S.R.; Kumar, V.J.S.: Digital control strategy for four quadrant operation of three phase BLDC motor with load variations. IEEE Trans. Ind. Inform. 9(2), 974–982 (2013). https://doi.org/10.1109/TII.2012.2221721

    Article  Google Scholar 

  24. Sathyan, A.; Milivojevic, N.; Lee, Y.-J.; Krishnamurthy, M.; Emadi, A.: An FPGA-based novel digital PWM control scheme for BLDC motor drives. IEEE Trans. Ind. Electron. 56(8), 3040–3049 (2009). https://doi.org/10.1109/TIE.2009.2022067

    Article  Google Scholar 

  25. Shanmugasundram, R.; Muhammad Zakariah, K.; Yadaiah, N.: Implementation and performance analysis of digital controllers for brushless DC motor drives. IEEE/ASME Trans. Mechatron. 19(1), 213–224 (2014). https://doi.org/10.1109/TMECH.2012.2226469

    Article  Google Scholar 

  26. Park, J.S.; Gu, B.; Kim, J.; Choi, J.; Jung, I. Development of BLDC motor drive for automotive applications. In: 2012 Electr. Syst. Aircraft, Railw. Sh. Propuls., pp. 1–6 (2012). https://doi.org/10.1109/ESARS.2012.6387424

  27. International_Rectifier. 3 phase controller for DC brushless motor http://www.irf.com/product-info/datasheets/data/ir3230s.pdf Accessed from 1 Apr 2013

  28. Yedamale, P.: Brushless DC (BLDC) Motor Fundamentals. Microchip AN885 (2003). http://ww1.microchip.com/downloads/en/AppNotes/00885a.pdf. Accessed 1 Feb 2020

  29. Puviwatn, W.; Tanboonjit, B.; Fuengwar, N.H. Overcurrent protection scheme of BMS S for Li-Ion battery used in electric bicycl. In: Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON); IEEE, pp. 1–5 (2013)

  30. Schofield, N.; Giraud-Audine, C.: Design procedure for brushless PM traction machines for electric vehicle applications. IEEE Int. Conf. Electr. Mach. Drives 2005, 1788–1792 (2005). https://doi.org/10.1109/IEMDC.2005.195962

    Article  Google Scholar 

  31. Van Den Bossche A.; Bozalakov, D.V.; Vyncke, T.; Cekov, V. Programmable logic device based brushless DC motor control. In: Power Electronics and Applications (EPE 2011); Birmingham, pp. 1–10 (2011)

Download references

Acknowledgements

The author acknowledges the advice and technical support of Prof. Dr.ir. Alex Van den Bossche and EELAB, Ghent University, Belgium.

Author information

Authors and Affiliations

Authors

Contributions

This paper presents the research work of the author.

Corresponding author

Correspondence to Mulugeta Gebrehiwot Gebremichael.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebremichael, M.G. Overcurrent Protection Circuit for Engine Starting Mode of Range Extended Electric Vehicles. Arab J Sci Eng 47, 14423–14434 (2022). https://doi.org/10.1007/s13369-022-06807-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06807-4

Keywords

Navigation