Skip to main content

Advertisement

Log in

Improved MgO/P(VDF-TrFE) Piezoelectric Nanogenerator with Flexible Electrode

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper demonstrates a technique for increasing the output power of a 2wt% MgO/P(VDF-TrFE) nanogenerator with a variegated electrode martial coating and determines an optimal electrode and substrate material combination for harvesting energy from vibrations. The MgO nanofillers in the MgO/P(VDF-TrFE) composite have a size of 50 nm as measured by SEM, and the F1s, O1s, C1s, and Mg2p elements are present at energy levels of 689 eV, 530 eV, 289 eV, and 50.5 eV, as confirmed by XPS. The FTIR peaks of 841 and 1288 cm−1 confirm the β-phase. Each silver, graphite, and rGO electrode material is separately coated over the MgO/P(VDF-TrFE) film with two different flexible copper and ITO/PET substrates, and these six devices produce electric potential under mechanical excitation. The rGO electrode with ITO/PET substrate devices generates 3.2 Vpk-pk open circuit voltage. The energy harvesting devices voltage, current and power analysis with respect to various resistive loads are presented. The rGO electrode with an ITO/PET device produces more power 312 mW at 10 Ω resistive load compared with other piezoelectric nanogenerator. The harvested power is used for flexible sensor and wearable biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Priya, S.; Inman, D.: Energy Harvesting Technologies, 2nd edn. Springer, New York (2008)

    Google Scholar 

  2. J. S. Harrison, Z. Ounaies, Piezoelectric Polymers, ICASE, National Aeronautics and Space Administration, Langley Research Center Hampton, Virginia, pp 1–32. 2001. https://ntrs.nasa.gov/api/citations/20020044745/downloads/20020044745.pdf

  3. Shepelin, N.A.; Glushenkov, A.M.; Lussini, V.C.; Fox, P.J.: New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy Environ. Sci. (2019). https://doi.org/10.1039/C8EE03006E

    Article  Google Scholar 

  4. Yana, J.; Liua, M.; Jeongc, Y.G.; Kang, W.: Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting. Nano Energy 56, 662–692 (2019). https://doi.org/10.1016/j.nanoen.2018.12.010

    Article  Google Scholar 

  5. Mangaiyarkarasi, P.; Lakshmi, P.; Sasrika, V.: Design of piezoelectric energy harvesting structures using ceramic and polymer materials. J. Mech. Sci. Technol. 35, 1407–1419 (2021). https://doi.org/10.1007/s12206-021-0307-8

    Article  Google Scholar 

  6. Baur, C.; Apo, D.J.; Priya, S.: Advances in Piezoelectric Polymer Composites for Vibrational Energy Harvesting, Conversion, Storage ACS Symposium Series, p. 1–27. American Chemical Society, Washington, DC (2014)

    Book  Google Scholar 

  7. Marquis, D.M.; Guillaume, É.; Chivas-Joly, C.: Properties of nanofillers in polymer. Nanocompos. Polym. Anal. Methods 11, 261–284 (2001)

    Google Scholar 

  8. Zhang, Y.; Huand, W.; Jeong, C.K.: A microcube based hybrid piezo composite as a flexible energy generator, RSC Advances. R. Soc. Chem. 7, 32502–32507 (2017). https://doi.org/10.1039/c7ra05605b

    Article  Google Scholar 

  9. Chen, X.; Li, X.: High-Performance Piezoelectric Nanogenerators with Imprinted P(VDF-TrFE)/BaTiO3 Nanocomposite Micropillars for Self-Powered Flexible Sensors, Micro Nano Small, p. 1–15. Wiley, London (2017)

    Google Scholar 

  10. Alam, M.M.; Sultana, A.: Electroactive β-crystalline phase inclusion and photo lumine scence response of a heat controlled spin -coated PVDF/TiO2 freestanding nanocomposite film for a nanogenerator and an active nanosensor. Nanotechnology (2017). https://doi.org/10.1088/1361-6528/aa7b25

    Article  Google Scholar 

  11. Arunguvai, J.; Lakshmi, P.: Influence of ZrO2 and TiO2 nano particles in P(VDF-TrFE) composite for energy harvesting application. J. Mater. Sci. Mater. Electron. 32, 12223–12231 (2021). https://doi.org/10.1007/s10854-021-05851-4

    Article  Google Scholar 

  12. Kim, H.; Johnson, J.: Enhanced Dielectric Properties of Three Phase Dielectric MWCNTs/BaTiO3/PVDF Nano Composites for Energy Storage Using Fused Deposition Modelling 3D Printing, p. 1–8. Elsevier, London (2018)

    Google Scholar 

  13. Hanifah, M.F.R.; Jaafar, J.; Othman, M.H.D.: Electro-spun of novel PVDF-Pt-Pd/RGO-CeO2 composite nanofibers as the high potential of robust anode catalyst in direct methanol fuel cell: fabrication and characterization. Inorganic Chem. Commun. 107, 1–5 (2019)

    Article  Google Scholar 

  14. Hickey, D.J.; Ercan, B.; Sun, L.: Adding MgO nanoparticles to hydro xyapatite–PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomaterialia 14, 175–184 (2015). https://doi.org/10.1016/j.actbio.2014.12.004

    Article  Google Scholar 

  15. Singh, D.; Choudhary, A.; Garg, A.: Flexible and robust piezoelectric polymer nanocomposites based energy harvesters. ACS Appl. Mater. Interfaces 10, 2793–2800 (2018). https://doi.org/10.1021/acsami.7b16973

    Article  Google Scholar 

  16. Arshad, N.; Wahid, M.H.M.; Rusop, M.: Dielectric and structural properties of poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-trifluoroethylene) (PVDFTrFE) filled with magnesium oxide nanofillers. J. Nanomater. 5961563, 1–12 (2019). https://doi.org/10.1155/2019/5961563

    Article  Google Scholar 

  17. Kim, M.; Dugundji, J.; Wardle, B.L.: Effect of electrode configurations on piezoelectric vibration energy harvesting performance. Smart Mater. Struct. 24, 1–10 (2015). https://doi.org/10.1088/0964-1726/24/4/045026

    Article  Google Scholar 

  18. Sijun, Du.; Jia, Yu.; Chen, S.-T.: A new electrode design method in piezoelectric vibration energyharvesters to maximize output power. Sens. Actuators A 263, 693–770 (2017). https://doi.org/10.1016/j.sna.2017.06.026

    Article  Google Scholar 

  19. Park, S.; Kim, Y.; Jung, H.: Energy harvesting efficiency of piezoelectric polymer film with graphene and metal electrodes. Sci. Rep. 7, 1–8 (2017). https://doi.org/10.1038/s41598-017-17791-3

    Article  Google Scholar 

  20. Hanifah, I.; Yuliasari, F.; Syakir, N.: Drop-coated reduced-GO thin film as counter electrode in DSSC. J. Phys. Conf. Ser. 1080, 1–6 (2018). https://doi.org/10.1088/1742-6596/1080/1/012025

    Article  Google Scholar 

  21. Valentini, L.; Bon, S.B.; Kenny, J.M.: Poly(methyl methacrylate)/graphene oxide layered films as generators for mechanical energy harvesting. ACS Appl. Mater. Interfaces 5, 3770–3775 (2013). https://doi.org/10.1021/am400388f

    Article  Google Scholar 

  22. Wang, L.Y.; Park, Y.; Cui, P.; Bak, S.; Lee, H.; Lee, S.M.; Lee, H.: Facile preparation of an n-type reduced graphene oxide field effect transistor at room temperature. Chem. Commun. 8(10), 3498–3502 (2014)

    Google Scholar 

  23. Jaafar, E., et al.: Study on morphological, optical and electrical properties of graphene oxide (GO) and reduced graphene oxide (RGO). Mater. Sci. Forum 917, 112–116 (2018). https://doi.org/10.4028/www.scientific.net/msf.917.112

    Article  Google Scholar 

  24. Yao, Lu.; Jiang, Y.; Lou, Z.: Wearable supercapacitor self-charged by P(VDF-TrFE) piezo electric separator. Progr. Nat. Sci. Mater. Int. 30, 174–179 (2020). https://doi.org/10.1016/j.pnsc.2020.01.023

    Article  Google Scholar 

  25. Cardenas, L.; MacLeod, J.; Lipton-Duffin, J.; Seifu, D.G.; Popescu, F.; Siaj, M.; Mantovani, D.; Rosei, F.: Reduced graphene oxide growth on 316L stainless steel for medical applications. Nanoscale 6(15), 8664–8670 (2014)

    Article  Google Scholar 

  26. Hsu, J.-S.; Lee, C.-C.: Experimental and simulated investigations of thin polymer substrates with an indium tin oxide coating under fatigue bending loadings. Mater. MDPI 9, 1–13 (2016). https://doi.org/10.3390/ma9090720p.p1-13

    Article  Google Scholar 

  27. Arunguvai, J.; Lakshmi, P.: Flexible nano vibration energy harvester using three phase polymer composites. J. Mater. Sci. Mater. Electr. (2020). https://doi.org/10.1007/s10854-020-03363-1PP

    Article  Google Scholar 

  28. Wei, J.; Saharudin, M.S.: N, N-dimethylformamide (DMF) usage in epoxy/graphene nanocomposite; problems associated with reaggregation. Polymer, MDPI 9, 1–11 (2017). https://doi.org/10.3390/polym9060193

    Article  Google Scholar 

  29. Huang, H.H.; Shih, W.C.; Lai, C.H.: Nonpolar resistive switching in the Pt/MgO/Pt nonvolatile memory device. Appl. Phys. Lett. (2010). https://doi.org/10.1063/1.3429024

    Article  Google Scholar 

  30. Maria, V.; Morales, J.M.: CuPd bimetallic nanoparticles supported on magnesium oxide as an active and stable catalyst for the reduction of 4-nitrophenol to 4-aminophenol. Int. J. Green Technol. 3, 51–62 (2017)

    Google Scholar 

  31. Gawande, M.B.; Branco, P.S.; Parghi, K.: Synthesis and characterization of versatile MgO–ZrO2 mixed metal oxide nanoparticles and their applications. Catal. Sci. Technol. RSC 1, 1653–1664 (2011). https://doi.org/10.1039/c1cy00259g

    Article  Google Scholar 

  32. Habibur, R.M.; Yaqoob, U.; Muhammad, S.: The effect of RGO on dielectric and energy harvesting properties of P(VDF-TrFE) matrix by optimizing electroactive β- phase without traditional polling process. Mater. Chem. Phys. 215, 46–55 (2018). https://doi.org/10.1016/j.matchemphys.2018.05.010

    Article  Google Scholar 

  33. Safarpour, M.; Khataee, A.; Vatanpour, V.: Preparation of a novel polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with reduced graphene oxide/titanium dioxide (TiO2) nanocomposite with enhanced hydrophilicity and antifouling properties. J. Ind. Eng. Chem. Res. Am. Chem. Soc. 53, 13370–13382 (2014)

    Google Scholar 

  34. Arunguvai, J.; Lakshmi, P.: Influence of ZrO2 and TiO2 nano particles in P (VDF-TrFE) composite for energy harvesting application. J. Mater. Sci. Mater. Electr. 32, 12223–12231 (2021)

    Article  Google Scholar 

  35. Zhao, X.; Li, S.; Ai, C.; Liu, H.: Fabrication and characterization of the Li-doped ZnO thin films piezoelectric energy harvester with multi-resonant frequencies. Micromachines MDPI 10, 1–14 (2019). https://doi.org/10.3390/mi10030212

    Article  Google Scholar 

  36. Ali, W.G.; Ibrahim, S.W.: Power analysis for piezoelectric energy harvester. Energy Power Eng. 4, 496–505 (2012)

    Article  Google Scholar 

  37. Sunithamani, S.; Lakshmi, P.: Simulation study on performance of MEMS piezoelectric energy harvester with optimized substrate to piezoelectric thickness ratio. Microsyst. Technol. 21, 733–738 (2015). https://doi.org/10.1007/s00542-014-2226-4

    Article  Google Scholar 

Download references

Acknowledgements

All the material characterization measurements reported in this work were carried out in the CeNSE, IISc under INUP, Bangalore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lakshmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arunguvai, J., Lakshmi, P. Improved MgO/P(VDF-TrFE) Piezoelectric Nanogenerator with Flexible Electrode. Arab J Sci Eng 47, 14365–14375 (2022). https://doi.org/10.1007/s13369-022-06805-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06805-6

Keywords

Navigation