Skip to main content
Log in

Surface Functionalization of Graphene Oxide with Silver Nanoparticles Using Phyto Extract and its Antimicrobial Properties Against Biological Contaminants

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Enhancing stability and antimicrobial properties of nanomaterial and its application in biological field is a burgeoning field of research. In this study, silver nanoparticle decorated graphene oxide (Ag0NP@GO) nanocomposite were synthesized using ecofriendly method. Lantana camara plant extract was selected as a green reducing agent. High phytochemical constituents [Total Phenols—10.44 (TAE) and 9.95 (GAE), Total Tannins—5.98 (TAE) and 5.75 (GAE), Total Flavonoids—8687 mg QE/Kg] in aqueous phytoextract was responsible for the reduction of Ag+ into silver nanoparticles (Ag0NP). The successful formation of nanocomposite was confirmed by the characterization of GO and Ag0NP@GO by UV–VIS, FTIR spectroscopy and XRD. Morphology and size of nanocomposite was confirmed with SEM–EDX and HR-TEM imaging. Results showed that silver nanoparticles (Ag0NPs) with an average size of 51 and 76 nm from Debye-Shrerrer’s equation and SEM, respectively were impregnated onto GO sheets. The antibacterial activity of synthesized nanocomposite was tested against bacteria and fungus using Kirby-Bauer test. The zone of inhibition was observed for Bacillus subtilis (21 mm), Staphylococcus aureus (18 mm), Escherichia coli (21 mm), Pseudomonas putida (21 mm) and Candida albicans (31 mm). Complete inhibition of Aspergillus niger was found at 400 mg/L. All results of the present study affirmed the potential applications of Ag0NP@GO as an antimicrobial agent against biological contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdelghany, T.M.; Al-Rajhi, A.M.H.; Al Abboud, M.A.; Alawlaqi, M.M.; Ganash Magdah, A.; Helmy, E.A.M.; Mabrouk, A.S.: Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. Rev. BioNanoSci (2017). https://doi.org/10.1007/s12668-017-0413-3

    Article  Google Scholar 

  2. Aboulthana, W.M.; Ibrahim, N.S.; Osman, N.M.; Seif, M.M.; Hassan, A.K.; Youssef, A.M.; El-Feky, A.M.; Madboli, A.A.: Evaluation of the biological efficiency of silver nanoparticles biosynthesized using Croton tiglium L. seeds extract against Azoxymethane induced colon cancer in rats. Asian Pacific J. Cancer. Prevent. (2020). https://doi.org/10.31557/APJCP.2020.21.5.1369

    Article  Google Scholar 

  3. Allen, M.J.; Tung, V.C.; Kaner, R.B.: Honeycomb Carbon: A Review of Graphene. Chem. Rev. (2009). https://doi.org/10.1021/cr900070d

    Article  Google Scholar 

  4. An, S.S.A.; Nanda, S.S.; Yi, D.K.: Oxidative stress and antibacterial properties of a graphene oxide-cystamine nanohybrid. Int. J. Nanomed. (2015). https://doi.org/10.2147/ijn.s75768

    Article  Google Scholar 

  5. Azrul, L.M.; Nurulaini, R.; Adzemi, M.A.; Marina, H.; Effendy, A.W.M.: Tannins quantification in terminalia catappa leaves extract and antihelmenthic potential evaluation. J. Natural Products 7, 98–103 (2014)

    Google Scholar 

  6. Brown, T.; Smith, D.: The effects of silver nitrate on the growth and ultrastructure of the yeast Cryptococcus albidus. Microbios Lett. 3, 155–162 (1976)

    Google Scholar 

  7. Cai, X.; Lin, M.; Tan, S.; Mai, W.; Zhang, Y.; Liang, Z.; Lin, Z.; Zhang, X.: The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon (2012). https://doi.org/10.1016/j.carbon.2012.02.002

    Article  Google Scholar 

  8. Chen, J.W.; Lee, G.W.M.; Chen, K.J.; Yang, S.H.: Control of bioaerosols in indoor environment by filter coated with nanosilicate platelet supported silver nanohybrid (AgNPs/NSP). Aerosol. Air Quality Res. (2016). https://doi.org/10.4209/aaqr.2016.06.0224

    Article  Google Scholar 

  9. Chen, J.; Sun, L.; Cheng, Y.; Lu, Z.; Shao, K.; Li, T.; Hu, C.; Han, H.: Graphene oxide-silver nanocomposite: novel agricultural antifungal agent against Fusarium graminearum for crop disease prevention. ACS Appl. Mater. Interfaces. (2016). https://doi.org/10.1021/acsami.6b05730

    Article  Google Scholar 

  10. Cheng, H.H.; Hsieh, C.C.; Tsai, C.H.: Antibacterial and regenerated characteristics of Ag-zeolite for removing bioaerosols in indoor environment. Aerosol. Air Quality Res. (2012). https://doi.org/10.4209/aaqr.2011.08.0134

    Article  Google Scholar 

  11. Chettri, P.; Vendamani, V.; Tripathi, A.; Singh, M.K.; Pathak, A.P.; Tiwari, A.: Green synthesis of silver nanoparticle-reduced graphene oxide using Psidium guajava and its application in SERS for the detection of methylene blue. Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2017.02.073

    Article  Google Scholar 

  12. Chook, S.; Chia, C.; Zakaria, S.; Ayob, M.; Chee, K.; Huang, N.; Neoh, H.; Lim, H.; Jamal, R.; Rahman, R.: Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method. Nanoscale. Res. Lett. (2012). https://doi.org/10.1186/1556-276x-7-541

    Article  Google Scholar 

  13. Chopra, I.: The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J. Antimicrob. Chemother. 60(2), 447–448 (2007)

    Article  Google Scholar 

  14. Cui, J.; Yang, Y.; Zheng, M.; Liu, Y.; Xiao, Y.; Lei, B.; Chen, W.: Facile fabrication of graphene oxide loaded with silver nanoparticles as antifungal materials. Mater. Res. Express (2014). https://doi.org/10.1088/2053-1591/1/4/045007

    Article  Google Scholar 

  15. Das, M.R.; Sarma, R.K.; Saikia, R.; Kale, V.S.; Shelke, M.V.; Sengupta, P.: Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf., B (2011). https://doi.org/10.1016/j.colsurfb.2010.10.033

    Article  Google Scholar 

  16. Deena, M.J.; Thoppil, J.E.: Antimicrobial activity of the essential oil of Lantana camara. Fitoterapia 71(4), 453–455 (2000)

    Article  Google Scholar 

  17. Ebrahim, S.; Eid, A.M.; Hassan, S.E.-D.; Salem, S.S.; Radwan, A.A.; Halawa, M.; Saleh, F.M.; Saad, H.A.; Saied, E.M.; Fouda, A.: The catalytic activity of biosynthesized magnesium oxide nanoparticles (MgO-NPs) for inhibiting the growth of pathogenic microbes, tanning effluent treatment, and chromium ion removal. Catalysts. 11(7), 821 (2021). https://doi.org/10.3390/catal11070821

    Article  Google Scholar 

  18. FAO/IAEA, (2000) Laboratory manual, quantification of tannins in tree foliage, “Co-ordinated research project on ‘use of nuclear and related techniques to develop simple tannin assays for predicting and improving the safety and efficiency of feeding ruminants on tanniniferous tree Foliage’, Working Document, IAEA, VIENNA

  19. Fernandez, M.; Porcel, M.; de la Torre, J.; Molina-Henares, M.A.; Daddaoua, A.; Llamas, M.A.; Roca, A.; Carriel, V.; Garzón, I.; Ramos, J.L.; Alaminos, M.; Duque, E.: Analysis of the pathogenic potential of nosocomial Pseudomonas putida strains. Front. Microbiol. (2015). https://doi.org/10.3389/fmicb.2015.00871

    Article  Google Scholar 

  20. Francis, S.; Joseph, S.; Koshy, P.; Mathew, B.: Microwave assisted green synthesis of silver nanoparticles using leaf extract of Elephantopus scaber and its environmental and biological applications. Artif. Cells. Nanomed. Biotechnol. 46, 795–804 (2017). https://doi.org/10.1080/21691401.2017.1345921

    Article  Google Scholar 

  21. de Freitas Rosa, P.; Aguiar, M.L.; Bernardo, A.: Modification of cotton fabrics with silver nanoparticles for use in conditioner air to minimize the Bioaerosol concentration in indoor environments. Water, Air, Soil Pollution. (2017). https://doi.org/10.1007/s11270-017-3429-y

    Article  Google Scholar 

  22. Galal, G. F.; Abd-Elhalim, B. T.; Abou-Taleb, K. A.; Haroun, A. A.; Gamal, R. F.: Toxicity assessment of green synthesized Cu nanoparticles by cell-free extract of Pseudomonas silesiensis as antitumor cancer and antimicrobial. Annal. Agricultur Sci. 66(1), 8–15 (2021). https://doi.org/10.1016/j.aoas.2021.01.006

    Article  Google Scholar 

  23. Ganjewala, D.; Sam, S.; Khan, K.H.: Biochemical compositions and antibacterial activities of Lantana camara plants with yellow, lavender, red and white flowers. EurAsian J. BioSci. 3(1), 69–77 (2009)

    Article  Google Scholar 

  24. Gao, R.; Hu, N.; Yang, Z.; Zhu, Q.; Chai, J.; Su, Y.; Zhang, L.; Zhang, Y.: Paper-like graphene-Ag composite films with enhanced mechanical and electrical properties. Nanoscale. Res. Lett. (2013). https://doi.org/10.1186/1556-276x-8-32

    Article  Google Scholar 

  25. Ghisalberti, E.L.: Lantana camara L. (verbenaceae). Fitoterapia 71(5), 467–486 (2000)

    Article  Google Scholar 

  26. Haldorai, Y.; Kim, B.K.; Jo, Y.L.; Shim, J.J.: Ag@graphene oxide nanocomposite as an efficient visible-light plasmonic photocatalyst for the degradation of organic pollutants: A facile green synthetic approach. Mater. Chem. Phys. (2014). https://doi.org/10.1016/j.matchemphys.2013.11.065

    Article  Google Scholar 

  27. Hamouda, H.I.; Abdel-Ghafar, H.M.; Mahmoud, M.H.H.: Multi-walled carbon nanotubes decorated with silver nanoparticles for antimicrobial applications. J. Environ. Chem. Eng. (2021). https://doi.org/10.1016/j.jece.2021.105034

    Article  Google Scholar 

  28. He, Y.; Cui, H.: Synthesis of highly chemiluminescent graphene oxide/silver nanoparticle nano-composites and their analytical applications. J. Mater. Chem. (2012). https://doi.org/10.1039/c2jm16028e

    Article  Google Scholar 

  29. Huang, N.M.: Simple room-temperature preparation of high-yield large-area graphene oxide. Int. J. Nanomed. (2011). https://doi.org/10.2147/ijn.s26812

    Article  Google Scholar 

  30. Hudler, G.W.: Magical mushrooms mischievous molds, p. 7–7. Princeton University, Princeton, NJ (1998)

    Book  Google Scholar 

  31. Irshad, M.; Zafaryab, M.; Singh, M.; Rizvi, M.M.A.: Comparative analysis of the antioxidant activity of cassia fistula extracts. Int. J. Med. Chem. (2012). https://doi.org/10.1155/2012/157125

    Article  Google Scholar 

  32. Jain, D.; Daima, H.; Kachhwala, S.; Kothari, S.: Synthesis of plant mediated silver nanoparticles using papaya fruit extract and evaluation of their anti-microbial activities. Dig. J. Nanomater. Biostruct. 4, 557–563 (2009)

    Google Scholar 

  33. Jain, R.; Singh, M.; Dezman, D.J.: Qualitative and quantitative characterization of phenolic compounds from lantana (Lantana camara) leaves. Weed Sci. (1989). https://doi.org/10.1017/s0043174500071964

    Article  Google Scholar 

  34. Jiang, Y.; Liu, D.; Cho, M.; Lee, S.S.; Zhang, F.; Biswas, P.; Fortner, J.D.: In situ photocatalytic synthesis of Ag nanoparticles (nAg) by crumpled graphene oxide composite membranes for filtration and disinfection applications. Environ. Sci. Technol. (2016). https://doi.org/10.1021/acs.est.5b04584

    Article  Google Scholar 

  35. Jung, J.H.; Hwang, G.B.; Lee, J.E.; Bae, G.N.: Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Langmuir (2011). https://doi.org/10.1021/la201851r

    Article  Google Scholar 

  36. Kaper, J.; Nataro, J.; Mobley, H.: Pathogenic Escherichia coli. Nat. Rev. Microbiol. (2004). https://doi.org/10.1038/nrmicro818

    Article  Google Scholar 

  37. Kesharwani, J.; Yoon, K.Y.; Hwang, J.; Rai, M.: Phytofabrication of silver nanoparticles by leaf extract of Datura metel: hypothetical mechanism involved in synthesis. J. Bionanosci. 3(1), 39–44 (2009)

    Article  Google Scholar 

  38. Ko, Y.S.; Joe, Y.H.; Seo, M.; Lim, K.; Hwang, J.; Woo, K.: Prompt and synergistic antibacterial activity of silver nanoparticle-decorated silica hybrid particles on air filtration. J. Mater. Chem. B (2014). https://doi.org/10.1039/c4tb01068j

    Article  Google Scholar 

  39. Kong, H.; Jang, J.: Antibacterial properties of Novel Poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir (2008). https://doi.org/10.1021/la703085e

    Article  Google Scholar 

  40. Kumar, S.; Sandhir, R.; Ojha, S.: Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC. Res. Notes (2014). https://doi.org/10.1186/1756-0500-7-560

    Article  Google Scholar 

  41. Kurantowicz, N.; Sawosz, E.; Jaworski, S.; Kutwin, M.; Strojny, B.; Wierzbicki, M.; Szeliga, J.; Hotowy, A.; Lipińska, L.; Koziński, R.; Jagiełło, J.; Chwalibog, A.: Interaction of graphene family materials with Listeria monocytogenes and Salmonella enterica. Nanoscale. Res. Lett. (2015). https://doi.org/10.1186/s11671-015-0749-y

    Article  Google Scholar 

  42. Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Xu, Z.; Liu, M.; Wang, D.: Green synthesis of silver nanoparticles-graphene oxide nanocomposite and its application in electrochemical sensing of tryptophan. Biosens. Bioelectron. (2013). https://doi.org/10.1016/j.bios.2012.10.029

    Article  Google Scholar 

  43. Liu, Y.; Tian, C.; Yan, B.; Lu, Q.; Xie, Y.; Chen, J.; Gupta, R.; Xu, Z.; Kuznicki, S.M.; Liu, Q.; Zeng, H.: Nanocomposites of graphene oxide, Ag nanoparticles, and magnetic ferrite nanoparticles for elemental mercury (Hg0) removal. RSC Adv. (2015). https://doi.org/10.1039/C4RA16016A

    Article  Google Scholar 

  44. Liu, H.; Zhong, L.; Yun, K.; Samal, M.: Synthesis, characterization, and antibacterial properties of silver nanoparticles-graphene and graphene oxide composites. Biotechnol. Bioprocess Eng. (2016). https://doi.org/10.1007/s12257-015-0733-5

    Article  Google Scholar 

  45. Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.; Tam, P.K.H.; Chiu, J.F.; Che, C.M.: Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5(4), 916–924 (2006). https://doi.org/10.1021/pr0504079

    Article  Google Scholar 

  46. Magaldi, S.; Mata-Essayag, S.; Hartung, C.: Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 8, 39–45 (2004)

    Article  Google Scholar 

  47. Martínez-Orozco, R.D.; Rosu, H.C.; Lee, S.W.; Rodríguez-González, V.: Understanding the adsorptive and photoactivity properties of Ag-graphene oxide nanocomposites. J Hazardous Mater (2013). https://doi.org/10.1016/j.jhazmat.2013.07.056

    Article  Google Scholar 

  48. McFarland, J.: The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. JAMA J. Am. Med. Assoc. 49, 1176–8 (1907). https://doi.org/10.1001/jama.1907.25320140022001f

    Article  Google Scholar 

  49. Mock, J.; Barbic, M.; Smith, R.; Schultz, A.; Schultz, S.: Shape effects in Plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116, 6755–6759 (2002)

    Article  Google Scholar 

  50. Moraes, M.D.; Araujo Lima, B.; Fonseca de Faria, A.; Brocchi, M.; Luiz Alves, O.: Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus. Int. J. Nanomed. (2015). https://doi.org/10.2147/ijn.s90660

    Article  Google Scholar 

  51. Nagah, S.; Saada, G.; Abdel-Maksoud, M.S.; El-Aziz, Abd; Youssef, A.M.: Green synthesis of silver nanoparticles, characterization, and use for sustainable preservation of historical parchment against microbial biodegradation. Biocatal. Agricultur. Biotechnol. 32, 101948 (2021)

    Article  Google Scholar 

  52. Nehra, P.; Chauhan, R.P.; Garg, N.; Verma, K.: Antibacterial and antifungal activity of chitosan coated iron oxide nanoparticles. Br. J. Biomed. Sci. (2018). https://doi.org/10.1080/09674845.2017.1347362

    Article  Google Scholar 

  53. Pasricha, R.; Gupta, S.; Joshi, A.G.; Bahadur, N.; Haranath, D.; Sood, K.N.; Singh, S.; Singh, S.: Directed nanoparticle reduction on graphene. Mater. Today (2012). https://doi.org/10.1016/s1369-7021(12)70047-0

    Article  Google Scholar 

  54. Pillai, A.M.; Sivasankarapillai, V.S.; Rahdar, A.; Joseph, J.; Sadeghfar, F.; Rajesh, K.; Kyzas, G.Z.: Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J. Mole. Struct. 1211, 128107 (2020). https://doi.org/10.1016/j.molstruc.2020.128107

    Article  Google Scholar 

  55. Ramyadevi, J.; Jeyasubramanian, K.; Marikani, A.; Rajakumar, G.; Rahuman, A.A.: Synthesis and antimicrobial activity of copper nanoparticles. Mater. Lett. (2012). https://doi.org/10.1016/j.matlet.2011.12.055

    Article  Google Scholar 

  56. Schuster, E.; Dunn-Coleman, N.; Frisvad, J.C.; Dijck, P.: On the safety of Aspergillus niger – a review. Appl. Microbiol. Biotechnol. (2002). https://doi.org/10.1007/s00253-002-1032-6

    Article  Google Scholar 

  57. Shaik, M.R.; Syed, R.; Adil, S.F.; Kuniyil, M.; Khan, M.; Alqahtani, M.S.; Shaik, J.P.; Siddiqui, M.R.H.; Al-Warthan, A.; Sharaf, M.A.; Abdelgawad, A.: Mn3O4 nanoparticles: Synthesis, characterization and their antimicrobial and anticancer activity against A549 and MCF-7 cell lines. Saudi J. Biol. Sci. (2021). https://doi.org/10.1016/j.sjbs.2020.11.087

    Article  Google Scholar 

  58. Silhavy, J.; Kahne, D.; Walker, S.: The bacterial cell envelope. Cold Spring Harbor Pers. Boil. 2(5), a000414 (2010)

    Google Scholar 

  59. Singh, P.; Kim, Y.J.; Zhang, D.; Yang, D.C.: Biological synthesis of nanoparticles from plants and microorganisms. Trends. Biotechnol. (2016). https://doi.org/10.1016/j.tibtech.2016.02.006

    Article  Google Scholar 

  60. Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M.: Improved synthesis of graphene oxide. ACS. Nano. 4(8), 4806–4814 (2010)

    Article  Google Scholar 

  61. Soroush, A.; Ma, W.; Silvino, Y.; Saifur Rahaman, M.D.: Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets. Environ. Sci. Nano 2, 395 (2015). https://doi.org/10.1039/C5EN00086F

    Article  Google Scholar 

  62. Thomer, L.; Olaf, S.; Missiakas, D.: Pathogenesis of Staphylococcus aureus Bloodstream Infections. Annu. Rev. Pathol. 11(1), 343–364 (2016)

    Article  Google Scholar 

  63. Tsui, C.; Eric, F.; Kong, J.R.: Pathogenesis of Candida albicans biofilm. Pathogens. Disease (2016). https://doi.org/10.1093/femspd/ftw018

    Article  Google Scholar 

  64. Vanlalveni, C.; Rajkumari, K.; Biswas, A., et al.: Green synthesis of silver nanoparticles using nostoc linckia and its antimicrobial activity: a novel biological approach. BioNanoSci. (2018). https://doi.org/10.1007/s12668-018-0520-9

    Article  Google Scholar 

  65. Yakabe, Y.; Sano, T.; Ushio, H.; Yasunaga, T.: Kinetic studies of the interaction between silver ion and deoxyribonucleic acid. Chem. Lett. (1980). https://doi.org/10.1246/cl.1980.373

    Article  Google Scholar 

  66. Yoon, K.Y.; Byeon, J.H.; Park, C.W.; Hwang, J.: Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers. Environ. Sci. Technol. (2008). https://doi.org/10.1021/es0720199

    Article  Google Scholar 

  67. Youngmin, S.; Jangsun, H.; Jieun, K.; Yoon, J.; Mintai, P.H.; Jonghoon, C.: Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles. Int. J. Nanomed. 9, 4621–4629 (2014)

    Google Scholar 

  68. Youssef, A.M.; Hasanin, M.S.; El-Aziz, M.E.A.: Conducting chitosan/hydroxylethyl cellulose/polyaniline bionanocomposites hydrogel based on graphene oxide doped with Ag-NPs. Int. J. Biol. Macromol. (2021). https://doi.org/10.1016/j.ijbiomac.2020.11.097

    Article  Google Scholar 

  69. Youssef, A.M.; Mohamed, S.A.; Abdel-Aziz, M.S.; Abdel-Aziz, M.E.; Turky, G.; Kamel, S.: Biological studies and electrical conductivity of paper sheet based on PANI/PS/Ag-NPs nanocomposite. Carbohyd. Polym. (2016). https://doi.org/10.1016/j.carbpol.2016.03.085

    Article  Google Scholar 

  70. Yuvaraj, H.; Kim, B.K.; Jo, Y.L.; Shim, J.J.: Ag@graphene oxide nanocomposite as an efficient visible-light plasmonic photocatalyst for the degradation of organic pollutants: A facile green synthetic approach. Mater. Chem. Phys. (2014). https://doi.org/10.1016/j.matchemphys.2013.11.065

    Article  Google Scholar 

  71. Zhu, C.; Guo, S.; Fang, Y.; Dong, S.: Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS. Nano. 4, 2429–37 (2010). https://doi.org/10.1021/nn1002387

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, Mr. Abhaysinh R Salunkhe is grateful to CSIR-HRDG for awarding Senior Research Fellowship (CSIR SRF). We also would like to thank the technical and administrative support from NEERI Mumbai Zonal Laboratory—Research and Innovation Centre, SAIF-IIT Bombay and CSIR-NEERI, Nagpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalini Tandon.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salunkhe, A., Tandon, S. & Dudhwadkar, S. Surface Functionalization of Graphene Oxide with Silver Nanoparticles Using Phyto Extract and its Antimicrobial Properties Against Biological Contaminants. Arab J Sci Eng 48, 47–61 (2023). https://doi.org/10.1007/s13369-022-06796-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06796-4

Keywords

Navigation