Skip to main content
Log in

Electrodeposition and Characterization of Ni-Cu Alloy and Submicron-Sized CeO2 Reinforced Ni-Cu Metal Matrix Composite Coatings

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Electrochemical deposition of Ni metal matrix composite coatings is widely used in various applications to improve corrosion resistance and hardness of the materials. In this study, the Ni-Cu and Ni-Cu/CeO2 metal matrix coatings were fabricated via electrodeposition on SS 304 substrates. The cyclic voltammetry measurements suggest that the addition of CeO2 particles into the electrolyte shifted hydrogen evolution reaction to more negative potentials and slightly accelerated the deposition of Ni ions. The compositional analyses also suggested a higher Ni fraction for the deposit with CeO2 containing electrolyte. The structural characterization through XRD measurements showed the presence of Ni-Cu solid solutions for all coatings and the presence of CeO2 for the ceramic reinforced layer. The crystal size of the Ni-Cu solid solutions ranged between 10 and 20 nm. It was observed that the morphology of the coatings was cauliflower and the size of the cauliflowers changed to a bigger size and turned into compacted layer with the addition of CeO2 into electrolyte. Deposits without CeO2 showed smaller and more localized separated cauliflowers, whereas coatings with CeO2 showed denser layer. The hardness of the samples increased from 317 ± 19 to 475 ± 18 HV and the corrosion current density decreased from 48.8 to 36.5 µA/cm2 with the addition of CeO2 suggesting an improved performance for Ni-Cu/CeO2 metal matrix composite coating. The Nyquist and Bode plots supported the findings in the potentiodynamic polarization tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. ASM, Introduction to surface engineering for corrosion and wear resistance. (2001)

  2. Tahri, W.; Hu, X.; Shi, C.; Zhang, Z.: Review on corrosion of steel reinforcement in alkali-activated concretes in chloride-containing environments. Constr. Build. Mater. 293, 123484 (2021). https://doi.org/10.1016/j.conbuildmat.2021.123484

    Article  Google Scholar 

  3. Zaffora, A.; Franco, F.D.; Santamaria, M.: Electrochemistry Corrosion of stainless steel in food and pharmaceutical industry. Curr. Opin. Electrochem. 29, 100760 (2021). https://doi.org/10.1016/j.coelec.2021.100760

    Article  Google Scholar 

  4. Attarzadeh, N.; Molaei, M.; Babaei, K.; Fattah-alhosseini, A.: New promising ceramic coatings for corrosion and wear protection of steels: a review. Surf. Interfaces. 23, 100997 (2021). https://doi.org/10.1016/j.surfin.2021.100997

    Article  Google Scholar 

  5. Khaled, K.; Berardi, U.: Current and future coating technologies for architectural glazing applications. Energy Build. 244, 111022 (2021). https://doi.org/10.1016/j.enbuild.2021.111022

    Article  Google Scholar 

  6. You, Q.; Xiong, J.; Guo, Z.; Huo, Y.; Liang, L.; Yang, L.: Study on coating performance of CVD coated cermet tools for 4340 steel cutting. Int. J. Refract. Met. Hard Mater. 98, 105554 (2021). https://doi.org/10.1016/j.ijrmhm.2021.105554

    Article  Google Scholar 

  7. Mohammed, I.K.; Havaldar, S.S.; Hiriyannaiah, A.: Composition optimization for NiAl + Al 2 O 3 + CeO composite coating on bearing steel by air plasma spray. Mater. Today Proc (2021). https://doi.org/10.1016/j.matpr.2021.01.139

    Article  Google Scholar 

  8. Reddy, M.; Prasad, C.D.; Patil, P.; Ramesh, M.R.; Rao, N.: Hot corrosion behavior of plasma-sprayed NiCrAlY / TiO 2 and NiCrAlY / Cr 2 O 3 / YSZ cermets coatings on alloy steel. Surf. Interfaces. 22, 100810 (2021). https://doi.org/10.1016/j.surfin.2020.100810

    Article  Google Scholar 

  9. Carvalho, P.; Jiang, Y.; Serpe, M.J.: Portable point-of-care diagnostic devices. Anal. Methods. (2016). https://doi.org/10.1039/c6ay02158a

    Article  Google Scholar 

  10. Muzammal, M.; Ma, H.; Huang, M.; Gao, Z.; Cao, J.; Wang, C.; Dong, C.; Wang, Y.; Kunwar, A.: Fabrication of cerium myristate coating for a mechanochemically robust modifier-free superwettability system to enhance the corrosion resistance on 316L steel by one-step electrodeposition. Surf. Coat. Technol. 398, 125970 (2020). https://doi.org/10.1016/j.surfcoat.2020.125970

    Article  Google Scholar 

  11. Walsh, F.C.; Wang, S.; Zhou, N.: The electrodeposition of composite coatings : Diversity, applications and challenges. Curr. Opin. Electrochem. 20, 8–19 (2020). https://doi.org/10.1016/j.coelec.2020.01.011

    Article  Google Scholar 

  12. Costa, J.M.; Florêncio, A.; Neto, D.A.: Ultrasound-assisted electrodeposition and synthesis of alloys and composite materials : A review. Ultrason. - Sonochemistry. 68, 105193 (2020). https://doi.org/10.1016/j.ultsonch.2020.105193

    Article  Google Scholar 

  13. Torkamani, A.D.; Velashjerdi, M.; Abbas, A.; Bolourchi, M.; Maji, P.: Electrodeposition of nickel matrix composite coatings via various boride particles: a review. J. Compos. Compd. 3, 106–113 (2021)

    Google Scholar 

  14. Protsenko, V.S.; Bogdanov, D.A.; Korniy, S.A.; Kityk, A.A.: Application of a deep eutectic solvent to prepare nanocrystalline Ni and Ni / TiO 2 coatings as electrocatalysts for the hydrogen evolution reaction. Int. J. Hydrogen Energy. 44, 24604–24616 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.188

    Article  Google Scholar 

  15. Ma, C.Y.; Zhao, D.Q.; Xia, F.F.; Xia, H.; Williams, T.; Xing, H.Y.: Ultrasonic-assisted electrodeposition of Ni-Al 2 O 3 nanocomposites at various ultrasonic powers. Ceram. Int. 46, 6115–6123 (2020). https://doi.org/10.1016/j.ceramint.2019.11.075

    Article  Google Scholar 

  16. Ji, R.; Han, K.; Jin, H.; Li, X.; Liu, Y.; Liu, S.; Dong, T.; Cai, B.; Cheng, W.: Preparation of Ni-SiC nano-composite coating by rotating magnetic fi eld- assisted electrodeposition. J. Manuf. Process. 57, 787–797 (2020). https://doi.org/10.1016/j.jmapro.2020.07.045

    Article  Google Scholar 

  17. Mo, T.; Chen, J.; Bai, W.; Wu, Y.; Zhang, P.; Zheng, B.: Ni / TiC composite electrodeposition on the surface of Ni-based superalloy. Surf. Coat. Technol. (2021). https://doi.org/10.1016/j.surfcoat.2021.127611

    Article  Google Scholar 

  18. Pompei, E.; Magagnin, L.; Lecis, N.; Cavallotti, P.L.: Electrodeposition of nickel – BN composite coatings. Electrochim. Acta. 54, 2571–2574 (2009). https://doi.org/10.1016/j.electacta.2008.06.034

    Article  Google Scholar 

  19. Chattopadhyay, A.K.; Mohanavel, V.; Ravichandran, M.: Electrodeposition of Ni-Nitride composite coatings : A review of recent study Electrodeposition of Ni-Nitride composite coatings : A review of recent study. IOP Conf. Ser. Mater. Sci. Eng. Pap. (2021). https://doi.org/10.1088/1757-899X/1098/6/062053

    Article  Google Scholar 

  20. Lelevic, A.; Walsh, F.C.: Electrodeposition of Ni e P alloy coatings : A review. Surf. Coat. Technol. 369, 198–220 (2019). https://doi.org/10.1016/j.surfcoat.2019.03.055

    Article  Google Scholar 

  21. Torabinejad, V.; Aliofkhazraei, M.; Assareh, S.; Allahyarzadeh, M.H.; Rouhaghdam, A.S.: Electrodeposition of Ni-Fe alloys, composites, and nano coatings e A review. J. Alloys Compd. 691, 841–859 (2017). https://doi.org/10.1016/j.jallcom.2016.08.329

    Article  Google Scholar 

  22. Zakeri, A.; Balashadehi, M.M.; Sabour, A.; Aghdam, R.: Development of hybrid electrodeposition/slurrf diffusion aluminide coatings on Ni-based superalloy with enhanced hot corrosion resistance. J. Compos. Compd. 3, 1–8 (2021)

    Google Scholar 

  23. Li, S.; Song, G.; Zhang, Y.; Fu, Q.; Pan, C.: Graphene-Reinforced Zn − Ni Alloy Composite Coating on Iron Substrates by Pulsed Reverse Electrodeposition and Its High Corrosion Resistance. ACS Omega (2021). https://doi.org/10.1021/acsomega.1c00977

    Article  Google Scholar 

  24. Zhang, W.; Du, S.; Li, B.; Mei, T.; Miao, Y.: Synthesis and characterization of TiN nanoparticle reinforced binary Ni-Co alloy coatings. J. Alloys Compd. 865, 158722 (2021). https://doi.org/10.1016/j.jallcom.2021.158722

    Article  Google Scholar 

  25. Gómez, E.; Pané, S.; Vallés, E.: Electrodeposition of Co-Ni and Co-Ni-Cu systems in sulphate-citrate medium. Electrochim. Acta. 51, 146–153 (2005). https://doi.org/10.1016/j.electacta.2005.04.010

    Article  Google Scholar 

  26. Green, T.A.; Russell, A.E.; Roy, S.: The development of a stable citrate electrolyte for the electrodeposition of copper-nickel alloys. J. Electrochem. Soc. 145, 875–881 (1998). https://doi.org/10.1149/1.1838360

    Article  Google Scholar 

  27. Kobayashi, T.; Shohji, I.: Joining process of dissimilar materials using three- dimensional electrodeposited Ni-Cu film. Mater. Manuf. Process. 36, 1076–1083 (2021). https://doi.org/10.1080/10426914.2021.1885708

    Article  Google Scholar 

  28. Ngamlerdpokin, K.; Tantavichet, N.: Electrodeposition of nickel e copper alloys to use as a cathode for hydrogen evolution in an alkaline media. Int. J. Hydrogen Energy. 39, 2505–2515 (2013). https://doi.org/10.1016/j.ijhydene.2013.12.013

    Article  Google Scholar 

  29. Pingale, A.D.; Owhal, A.; Katarkar, A.S.; Belgamwar, S.U.; Rathore, J.S.: Recent researches on Cu-Ni alloy matrix composites through electrodeposition and powder metallurgy methods : A review. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.07.145

    Article  Google Scholar 

  30. Deo, Y.; Guha, S.; Sarkar, K.; Mohanta, P.; Pradhan, D.: Applied surface science electrodeposited Ni-Cu alloy coatings on mild steel for enhanced corrosion properties. Appl. Surf. Sci. 515, 146078 (2020). https://doi.org/10.1016/j.apsusc.2020.146078

    Article  Google Scholar 

  31. Goranova, D.; Rashkov, R.; Avdeev, G.; Tonchev, V.: Electrodeposition of Ni – Cu alloys at high current densities : details of the elements distribution. J. Mater. Sci. 51, 8663–8673 (2016). https://doi.org/10.1007/s10853-016-0126-y

    Article  Google Scholar 

  32. Heragh, M.F.; Eskandarinezhad, S.; Dehghan, A.: Journal of Composites and Compounds. 2, 123–128 (2020)

    Article  Google Scholar 

  33. Alizadeh, M.; Safaei, H.: Applied Surface Science Characterization of Ni-Cu matrix, Al 2 O 3 reinforced nano-composite coatings prepared by electrodeposition. Appl. Surf. Sci. 456, 195–203 (2018). https://doi.org/10.1016/j.apsusc.2018.06.095

    Article  Google Scholar 

  34. Li, B.; Mei, T.; Li, D.; Du, S.: Ultrasonics - Sonochemistry Ultrasonic-assisted electrodeposition of Ni-Cu / TiN composite coating from sulphate-citrate bath : Structural and electrochemical properties. Ultrason. - Sonochemistry. 58, 104680 (2019). https://doi.org/10.1016/j.ultsonch.2019.104680

    Article  Google Scholar 

  35. Li, B.; Mei, T.; Li, D.; Du, S.; Zhang, W.: Structural and corrosion behavior of Ni-Cu and Ni-Cu / ZrO 2 composite coating electrodeposited from sulphate-citrate bath at low Cu concentration with additives. J. Alloys Compd. 804, 192–201 (2019). https://doi.org/10.1016/j.jallcom.2019.06.381

    Article  Google Scholar 

  36. Safavi, M.S.; Fathi, M.; Mirzazadeh, S.; Ansarian, A.: Perspectives in corrosion-performance of Ni – Cu coatings by adding Y 2 O 3 nanoparticles. Surf. Eng. 37, 226–235 (2021). https://doi.org/10.1080/02670844.2020.1715543

    Article  Google Scholar 

  37. Sharma, V.K.; Kumar, V.; Joshi, R.S.: Investigation of rare earth particulate on tribological and mechanical properties of Al-6061 alloy composites for aerospace application. Integr. Med. Res. 8, 3504–3516 (2019). https://doi.org/10.1016/j.jmrt.2019.06.025

    Article  Google Scholar 

  38. Vipin, S.; Sharma, K.: A review of recent research on rare earth particulate composite materials and structures with their applications. Trans. Indian Inst. Met. (2021). https://doi.org/10.1007/s12666-021-02338-y

    Article  Google Scholar 

  39. Xue, Y.; Jia, X.; Zhou, Y.; Ma, W.; Li, J.: Tribological performance of Ni – CeO 2 composite coatings by electrodeposition. Surf. Coat. Technol. 200, 5677–5681 (2006). https://doi.org/10.1016/j.surfcoat.2005.08.002

    Article  Google Scholar 

  40. Zeng, Y.B.; Qu, N.S.; Hu, X.Y.: Preparation and Characterization of Electrodeposited Ni-CeO 2 Nanocomposite Coatings with High Current Density. Int. J. Electrochem. Sci. 9, 8145–8154 (2014)

    Google Scholar 

  41. Shanmugasamy, S.; Balakrishnan, K.; Subasri, A.; Ramalingam, S.; Subramania, A.: Development of CeO 2 nanorods reinforced electrodeposited nickel nanocomposite coating and its tribological and corrosion resistance. J. Rare Earths. 36, 1319–1325 (2018). https://doi.org/10.1016/j.jre.2018.06.004

    Article  Google Scholar 

  42. Qu, N.S.; Qian, W.H.; Hu, X.Y.; Zhu, Z.W.: Fabrication of Ni-CeO 2 nanocomposite coatings synthesised via a modified sediment Co-deposition process. Int. J. Electrochem. Sci. 8, 11564–11577 (2013)

    Google Scholar 

  43. Guo, L.; Searson, P.C.: Electrochimica Acta On the influence of the nucleation overpotential on island growth in electrodeposition. Electrochim. Acta. 55, 4086–4091 (2010). https://doi.org/10.1016/j.electacta.2010.02.038

    Article  Google Scholar 

  44. Nelson, B.: Mechanical Properties and Corrosion Behaviour of Nanostructured Cu-rich Cu-Ni Electrodeposited Films. Int. J. Electrochem. Sci. 7, 1288–1302 (2012)

    Google Scholar 

  45. Toloei, A.S.; Stoilov, V.; Northwood, D.O.: The effect of different surface topographies on the corrosion behaviour of nickel. Mater. Charact. VI. 77, 193–204 (2013). https://doi.org/10.2495/MC130171

    Article  Google Scholar 

  46. Hamid, Z.A.: Performance of Ni – Cu – ZrO 2 nanocomposite coatings fabricated by electrodeposition technique. Anti-Corrosion Methods Mater. (2017). https://doi.org/10.1108/ACMM-05-2016-1672

    Article  Google Scholar 

  47. Taherimanesh, A.; Rashidi, A.M.: The Effect of Bath pH and Temperature on the Corrosion Behavior of Co-Electrodeposited Ni-Cu / Cr 2 O 3 Nanocomposite Coatings. J. Mater. Eng. Perform. 29, 7863–7871 (2020). https://doi.org/10.1007/s11665-020-05301-y

    Article  Google Scholar 

  48. Lvovich, V.F.: Impedance Spectroscopy Applications to Electrochemical and Dielectric Phenomena, John Wiley & Sons. (2012)

  49. Scully, J.R.; Silverman, D.C.; Kendig, M.: Electrochemical Impedance: Analysis and Interpretation, ASTM STP 1188. Philadelphia: American Society for Testing and Materials. (1993)

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Begum Unveroglu.

Ethics declarations

Conflict of interests

The author declares that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unveroglu, B. Electrodeposition and Characterization of Ni-Cu Alloy and Submicron-Sized CeO2 Reinforced Ni-Cu Metal Matrix Composite Coatings. Arab J Sci Eng 48, 145–157 (2023). https://doi.org/10.1007/s13369-022-06783-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06783-9

Keywords

Navigation