Skip to main content
Log in

Bandpass Filter Design Using Deep Neural Network and Differential Evolution Algorithm

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, we have used a hybrid approach to design parallel-coupled microstrip bandpass filters. It can take a long time to design a parallel-coupled microstrip bandpass filter within the desired constraints. We developed a two-phase approach to achieve an efficient design process. We chose 3 GHz as the center frequency of the designed filter. The 3 GHz center frequency is a standard frequency used in radar, maritime, and radio navigation applications. To optimize the structural parameters, we first created the surrogate model of the filter with a deep neural network. For this, we created our dataset with the EM simulator using five different structural parameters. Our dataset consists of the simulation output of \( S_{11} \) and \( S_{21} \) values in the specified frequency range between 2.5 GHz and 3.5 GHz. After creating the surrogate model, we optimized the structural parameters using the differential evolution algorithm. We tested our method by designing filters with different structure parameters in the optimization phase. We optimized the structural parameters for different bandwidths. The simulation results show that our method is accurate and reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Davis, W.A.; Agarwal, K.: Radio frequency circuit design. Wiley, Hoboken (2003)

    Google Scholar 

  2. Hong, J.S.G.; Lancaster, M.J.: Microstrip filters for RF/microwave applications. Wiley, Hoboken (2004)

    Google Scholar 

  3. Mahouti, T., Yıldırım, T., Kuşkonmaz, N.: “Artificial intelligence–based design optimization of nonuniform microstrip line band pass filter,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, p. e2888, (2021)

  4. Kabir, H.; Wang, Y.; Yu, M.; Zhang, Q.-J.: Neural network inverse modeling and applications to microwave filter design. IEEE Trans. Microw. Theory Tech. 56(4), 867–879 (2008)

    Article  Google Scholar 

  5. Jin, J.; Feng, F.; Na, W.; Yan, S.; Liu, W.; Zhu, L.; Zhang, Q.-J.: Recent advances in neural network-based inverse modeling techniques for microwave applications. Int J Numer Model: Electron Netw, Devices Fields 33(6), e2732 (2020)

    Article  Google Scholar 

  6. Pan, G.; Wu, Y.; Yu, M.; Fu, L.; Li, H.: Inverse modeling for filters using a regularized deep neural network approach. IEEE Microw. Wirel. Compon. Lett. 30(5), 457–460 (2020)

    Article  Google Scholar 

  7. Chen, X.; Tian, Y.; Zhang, T.; Gao, J.: Differential evolution based manifold gaussian process machine learning for microwave filter’s parameter extraction. Int. J. Numer. Model: Electron. Netw., Devices Fields 8, 146 450-146 462 (2020)

    Google Scholar 

  8. Zhao, P.; Wu, K.: Homotopy optimization of microwave and millimeter-wave filters based on neural network model. IEEE Trans. Microw. Theory Tech. 68(4), 1390–1400 (2020)

    Article  Google Scholar 

  9. Ohira, M., Takano, K., Ma, Z.:“A novel deep-q-network based fine-tuning approach for planar bandpass filter design,” IEEE Microwave and Wireless Components Letters, (2021)

  10. Liu, B.; Yang, H.; Lancaster, M.J.: Global optimization of microwave filters based on a surrogate model-assisted evolutionary algorithm. IEEE Trans. Microw. Theory Tech. 65(6), 1976–1985 (2017)

    Article  Google Scholar 

  11. Jin, J.; Zhang, C.; Feng, F.; Na, W.; Ma, J.; Zhang, Q.-J.: Deep neural network technique for high-dimensional microwave modeling and applications to parameter extraction of microwave filters. IEEE Trans. Microw. Theory Tech. 67(10), 4140–4155 (2019)

    Article  Google Scholar 

  12. Nguyen, T.; Shi, B.; Ma, H.; Li, E.-P.; Chen, X.; Cangellaris, A.C.; Schutt-Ainé, J.: Comparative study of surrogate modeling methods for signal integrity and microwave circuit applications. IEEE Trans. Compon., Packag. Manuf. Technol. 11(9), 1369–1379 (2021)

    Article  Google Scholar 

  13. Zhao, Z.; Feng, F.; Zhang, W.; Zhang, J.; Jin, J.; Zhang, Q.-J.: Parametric modeling of em behavior of microwave components using combined neural networks and hybrid-based transfer functions. IEEE Access 8, 93 922-93 938 (2020)

    Article  Google Scholar 

  14. Zhang, Q.-J.; Gupta, K.C.; Devabhaktuni, V.K.: Artificial neural networks for rf and microwave design-from theory to practice. IEEE Trans. Microw. Theory Tech. 51(4), 1339–1350 (2003)

    Article  Google Scholar 

  15. Babu, G. S., Zhao, P., Li, X.-L.: “Deep convolutional neural network based regression approach for estimation of remaining useful life,” in International conference on database systems for advanced applications. Springer, pp. 214–228. (2016)

  16. Wei, Z.; Chen, X.: Deep-learning schemes for full-wave nonlinear inverse scattering problems. IEEE Trans. Geosci. Rem. Sens. 57(4), 1849–1860 (2018)

    Article  Google Scholar 

  17. Zhu, W.; Huang, Y.; Zeng, L.; Chen, X.; Liu, Y.; Qian, Z.; Du, N.; Fan, W.; Xie, X.: Anatomynet: deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med. Phys. 46(2), 576–589 (2019)

    Article  Google Scholar 

  18. Moazzen, Y.; Capar, A.; Albayrak, A.; Çalık, N.; Töreyin, B.U.: Metaphase finding with deep convolutional neural networks. Biomed. Signal Process. Control 52, 353–361 (2019)

    Article  Google Scholar 

  19. Albayrak, A.; Akhan, A.U.; Calik, N.; Capar, A.; Bilgin, G.; Toreyin, B.U.; Muezzinoglu, B.; Turkmen, I.; Durak-Ata, L.: A whole-slide image grading benchmark and tissue classification for cervical cancer precursor lesions with inter-observer variability. Med. Biol. Eng. Comput. 59(7), 1545–1561 (2021)

    Article  Google Scholar 

  20. Calik, N.; Belen, M.A.; Mahouti, P.: Deep learning base modified mlp model for precise scattering parameter prediction of capacitive feed antenna. Int. J. Numer. Model: Electron. Netw., Devices Fields 33(2), e2682 (2020)

    Article  Google Scholar 

  21. Koziel, S.; Pietrenko-Dabrowska, A.; Al-Hasan, M.: Accelerated parameter tuning of antenna structures using inverse and feature-based forward kriging surrogates. Int. J. Numer. Model: Electron. Netw., Devices Fields 34, e2880 (2021)

    Article  Google Scholar 

  22. Zhang, Z.; Jiang, F.; Jiao, Y.; Cheng, Q.S.: Low-cost surrogate modeling of antennas using two-level gaussian process regression method. Int. J. Numer. Model.: Electron. Netw., Devices Fields 34, e2886 (2021)

    Article  Google Scholar 

  23. Basyigit, I.B.; Genc, A.; Dogan, H.; Senel, F.A.; Helhel, S.: Deep learning for both broadband prediction of the radiated emission from heatsinks and heatsink optimization. Eng. Sci. Technol., Int. J. 24, 706 (2021)

    Google Scholar 

  24. Han, S.; Tian, Y.; Ding, W.; Li, P.: Resonant frequency modeling of microstrip antenna based on deep kernel learning. IEEE Access 9, 39 067-39 076 (2021)

    Article  Google Scholar 

  25. Nguyen, H.T.; Peterson, A.F.: Machine learning for automating the design of millimeter-wave baluns. IEEE Trans. Circuits Syst. I: Regul. Pap. 68(6), 2329–2340 (2021)

    Article  Google Scholar 

  26. Nalband, A.H.; Sarvagya, M.; Ahmed, M.R.: Spectral efficient beamforming for mmwave miso systems using deep learning techniques. Arab. J. Sci. Eng. 46, 9783 (2021)

    Article  Google Scholar 

  27. Dai, X.; Yang, Q.; Du, H.; Li, J.; Guo, C.; Zhang, A.: Direct synthesis approach for designing high selectivity microstrip distributed bandpass filters combined with deep learning. AEU-Int. J. Electron. Commun. 131, 153499 (2021)

    Article  Google Scholar 

  28. Jin, J.; Feng, F.; Zhang, J.; Yan, S.; Na, W.; Zhang, Q.: A novel deep neural network topology for parametric modeling of passive microwave components. IEEE Access 8, 82 273-82 285 (2020)

    Article  Google Scholar 

  29. Zhang, W.; Feng, F.; Yan, S.; Zhao, Z.; Na, W.: Multiphysics parametric modeling of microwave components using combined neural networks and transfer function. IEEE Access 8, 5383–5392 (2020)

    Article  Google Scholar 

  30. Shiu, R.-K.; Chen, Y.-W.; Peng, P.-C.; Chiu, J.; Zhou, Q.; Chang, T.-L.; Shen, S.; Li, J.-W.; Chang, G.-K.: Performance enhancement of optical comb based microwave photonic filter by machine learning technique. J. Lightwave Technol. 38(19), 5302–5310 (2020)

    Article  Google Scholar 

  31. Jamshidi, M.B.; Lalbakhsh, A.; Mohamadzade, B.; Siahkamari, H.; Mousavi, S.M.H.: A novel neural-based approach for design of microstrip filters. AEU-Int. J. Electron. Commun. 110, 152847 (2019)

    Article  Google Scholar 

  32. Ohira, M.; Yamashita, A.; Ma, Z.; Wang, X.: A novel eigenmode-based neural network for fully automated microstrip bandpass filter design. In 2017 IEEE MTT-S International Microwave Symposium (IMS) 2017, 1628–1631 (2017)

  33. Du, H.; Yang, Q.; Dai, X.; Guo, C.; Liao, X.; Zhang, A.: A structure parameter estimation method for microstrip bpf based on multilayer fcn. IEEE Microw. Wirel. Compon. Lett. 30(6), 581–584 (2020)

    Article  Google Scholar 

  34. Pozar, D.M.: Microwave and RF design of wireless systems. Wiley, Hoboken (2000)

    Google Scholar 

  35. Mongia, R., Bahl, I. J., Bhartia, P., Hong, J.: RF and microwave coupled-line circuits. Artech house Norwood, MA, vol. 685. (1999)

  36. Pandya, S., Wakchaure, M. A., Shankar, R., Annam, J. R.: “Analysis of noma-ofdm 5g wireless system using deep neural network,” The Journal of Defense Modeling and Simulation, p. 1548512921999108, (2021)

  37. Ito, S., Hayashi, T.: “Radio propagation estimation in a long-range environment using a deep neural network,” in 2021 15th European Conference on Antennas and Propagation (EuCAP). IEEE, pp. 1–5.(2021)

  38. Ji, Y.; Zhang, F.; Wang, J.; Wang, Z.; Jiang, P.; Liu, H.; Sui, Q.: Deep neural network-based permittivity inversions for ground penetrating radar data. IEEE Sens. J. 21(6), 8172–8183 (2021)

    Article  Google Scholar 

  39. Zhang, H., Nguyen, H., Bui, X.-N., Pradhan, B., Asteris, P. G., Costache, R., Aryal, J.: “A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and harris hawks optimization algorithm,” Engineering with Computers, pp. 1–14, (2021)

  40. Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017)

    Article  Google Scholar 

  41. Yarotsky, D.: Error bounds for approximations with deep relu networks. Neural Netw. 94, 103–114 (2017)

    Article  MATH  Google Scholar 

  42. Petersen, P.; Voigtlaender, F.: Optimal approximation of piecewise smooth functions using deep relu neural networks. Neural Netw. 108, 296–330 (2018)

    Article  MATH  Google Scholar 

  43. Storn, R.; Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sun, G.; Li, C.; Deng, L.: An adaptive regeneration framework based on search space adjustment for differential evolution. Neural Comput. Appl. 33, 9503 (2021)

    Article  Google Scholar 

  45. Ohira, M., Yamashita, A., Ma, Z., Wang, X.:“Automated microstrip bandpass filter design using feedforward and inverse models of neural network,” in 2018 Asia-Pacific Microwave Conference (APMC). IEEE, pp. 1292–1294. (2018)

  46. Uluslu, A.: “Design of microstrip filter by modeling with reduced data,” The Applied Computational Electromagnetics Society Journal (ACES), pp. 1453–1459, (2021)

  47. Yang, M., Sheth, S. A., Schevon, C. A., Ii, G. M. M., Mesgarani,N.: “Speech reconstruction from human auditory cortex with deep neural networks,” in Sixteenth Annual Conference of the International Speech Communication Association, (2015)

  48. Liu, Y., Wang, Y., Yang, X., Zhang, L.: “Short-term travel time prediction by deep learning: a comparison of different lstm-dnn models,” in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). IEEE, pp. 1–8.(2017)

  49. Bi, Y., Bhatia, R., Kapoor, S.: Intelligent Systems and Applications: Proceedings of the 2019 Intelligent Systems Conference (IntelliSys) Volume 1. Springer Nature, vol. 1037. (2019)

  50. Gu, X.; Han, F.; Wang, Z.: Dependency analysis of frequency and strength of gamma oscillations on input difference between excitatory and inhibitory neurons. Cognit. Neurodyn. 15(3), 501–515 (2021)

    Article  Google Scholar 

  51. Bowick, C.: RF circuit design. Elsevier, Hoboken (2011)

    Google Scholar 

  52. Cameron, R.J.; Kudsia, C.M.; Mansour, R.R.: Microwave filters for communication systems: fundamentals, design, and applications. Wiley, Hoboken (2018)

    Book  Google Scholar 

  53. Rahman, M.U.; Park, J.-D.: A compact tri-band bandpass filter using two stub-loaded dual mode resonators. Prog. Electromagn. Res. M 64, 201–209 (2018)

    Article  Google Scholar 

  54. Rahman, M.U.; Ko, D.-S.; Park, J.-D.: A compact tri-band bandpass filter utilizing double mode resonator with 6 transmission zeros. Microw. Opt. Technol. Lett. 60(7), 1767–1771 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilge Şenel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şenel, B., Şenel, F.A. Bandpass Filter Design Using Deep Neural Network and Differential Evolution Algorithm. Arab J Sci Eng 47, 14343–14354 (2022). https://doi.org/10.1007/s13369-022-06769-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06769-7

Keywords

Navigation