Skip to main content
Log in

Functionalized Magnetite Nanoparticle Coagulants with Tropical Fruit Waste Extract: A Potential for Water Turbidity Removal

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study explored the potential of functionalized nanoparticles with active compounds extracted from tropical fruit wastes to increase the performance of turbidity removal from the water of natural coagulants. Extracts from banana, durian, and jackfruit wastes (peel and seed) were tested for their coagulation activity. Banana peel extract had the highest coagulation activity of 70% and was functionalized with magnetite nanoparticles and characterized with X-ray diffraction and Fourier transform infrared spectroscopy. Analysis of variance showed the mass and settling time of the functionalized nanoparticle as significant parameters associated with water turbidity removal. Response surface methodology using the Box–Behnken design (BBD) for tropical fruit wastes indicated that a linear model was able to describe the effects of the parameters (tropical fruit mass, nanoparticle mass, and settling time) on the response (turbidity removal). Optimized parameters via BBD for tropical fruit mass, nanoparticle mass, and settling time were 0.26 g, 14.37 mg, and 25 min, respectively. Field sample tests showed turbidity removal percentages using the functionalized magnetite nanoparticle with banana peel extracts were between 88.5 and 92.8%. The performance efficacy score of functionalized magnetite nanoparticles with banana peel extract as the coagulant showed promising potential as a water turbidity removal during an emergency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lantagne, D.S.; Clasen, T.F.: Use of household water treatment and safe storage methods in acute emergency response: case study results from Nepal, Indonesia, Kenya, and Haiti. Environ. Sci. Technol. 46, 11352–11360 (2012). https://doi.org/10.1021/es301842u

    Article  Google Scholar 

  2. Pooi, C.K.; Ng, H.Y.: Review of low-cost point-of-use water treatment systems for developing communities. Clean Water (2018). https://doi.org/10.1038/s41545-018-0011-0

    Article  Google Scholar 

  3. Praveena, S.M.; Aris, A.Z.: Application of low-cost materials coated with silver nanoparticle as water filter in Escherichia coli removal. Water Qual. Expo. Health 7, 617–625 (2015). https://doi.org/10.1007/s12403-015-0167-5

    Article  Google Scholar 

  4. Ho, Y.C.; Ismail, N.; Alkarkhi, A.F.M.; Morad, N.: Reuse of fruit waste as biopolymeric flocculant and optimizing turbidity reduction: comparison study with industrial flocculant. J. Environ. Eng. 136, 1267–1276 (2010). https://doi.org/10.1061/(asce)ee.1943-7870.0000269

    Article  Google Scholar 

  5. Hesami, F.; Bina, B.; Ebrahimi, A.: The effectiveness of chitosan as coagulant aid in turbidity removal from water. Int. J. Environ. Health Eng. 2, 46–51 (2013). https://doi.org/10.4103/2277-9183.131814

    Article  Google Scholar 

  6. Oladoja, N.A.; Unuabonah, E.I.; Amuda, O.S.; Kolawole, O.M.: Polysaccharides as a Green and Sustainable Resources for Water and Wastewater Treatment. Briefs in Molecular Science. Springer (2017)

    Google Scholar 

  7. Choy, S.Y.; Prasad, K.M.N.; Wu, T.Y.; Raghunandan, M.E.; Yang, B.; Phang, S.M.; Ramanan, R.N.: Isolation, characterization and the potential use of starch from jackfruit seed wastes as a coagulant aid for treatment of turbid water. Environ. Sci. Pollut. Res. 24, 2876–2889 (2017). https://doi.org/10.1007/s11356-016-8024-z

    Article  Google Scholar 

  8. Asrafuzzaman, M.; Fakhruddin, A.N.M.; Hossain, M.A.: Reduction of turbidity of water using locally available natural coagulants. ISRN Microbiol. 2011, 1–6 (2011). https://doi.org/10.5402/2011/632189

    Article  Google Scholar 

  9. Pathak, P.D.; Mandavgane, S.A.; Kulkarni, B.D.: Fruit peel waste as a novel low-cost bio adsorbent. Rev. Chem. Eng. (2015). https://doi.org/10.1515/revce-2014-0041

    Article  Google Scholar 

  10. Anhwange, B.A.; Ugye, T.J.; Nyiaatagher, T.D.: Chemical composition of Musa sapientum (banana) peels. Electron. J. Environ. Agric. Food Chem. 8, 437–444 (2009)

    Google Scholar 

  11. Ashoush, I.S.; Gadallah, M.G.E.: Utilization of mango peels and seed kernels powders as sources of phytochemicals in biscuit. World J. Dairy Food Sci. 6, 35–42 (2011)

    Google Scholar 

  12. Hettiaratchi, U.P.; Ekanayake, S.; Welihinda, J.: Nutritional assessment of a jackfruit (Artocarpus heterophyllus) meal. Ceylon Med. J. 56, 54–80 (2011). https://doi.org/10.4038/cmj.v56i2.3109

    Article  Google Scholar 

  13. Banerjee, S.; Ranganathan, V.; Patti, A.; Arora, A.: Valorisation of pineapple wastes for food and therapeutic applications. Trends Food Sci. Technol. 82, 60–70 (2018)

    Article  Google Scholar 

  14. Seghosime, A.; Awudza, J.A.M.; Buamah, R.; Ebeigbe, A.B.; Kwarteng, S.O.: Effect of locally available fruit waste on treatment of water turbidity. Civ. Environ. Res. 9, 7–15 (2017)

    Google Scholar 

  15. Cheok, C.Y.; Mohd Adzahan, N.; Abdul Rahman, R.; Zainal Abedin, N.H.; Hussain, N.; Sulaiman, R.; Chong, G.H.: Current trends of tropical fruit waste utilization. Crit. Rev. Food Sci. Nutr. 58, 335–361 (2018). https://doi.org/10.1080/10408398.2016.1176009

    Article  Google Scholar 

  16. Jadhav, M.V.; Mahajan, Y.S.: Assessment of feasibility of natural coagulants in turbidity removal and modeling of coagulation process. Desalin. Water Treat. 52, 5812–5821 (2014). https://doi.org/10.1080/19443994.2013.816875

    Article  Google Scholar 

  17. Ramavandi, B.: Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago avata. Water Resour. Ind. 6, 36–50 (2014)

    Article  Google Scholar 

  18. Mateus, G.A.P.; Paludo, M.P.; Dos Santos, T.R.T.; Silva, M.F.; Nishi, L.; Fagundes-Klen, M.R.; Gomes, R.G.; Bergamasco, R.: Obtaining drinking water using a magnetic coagulant composed of magnetite nanoparticles functionalized with Moringa oleifera seed extract. J. Environ. Chem. Eng. 6, 4084–4092 (2018). https://doi.org/10.1016/j.jece.2018.05.050

    Article  Google Scholar 

  19. Oliveira, E.I.S.; Santos, J.B.; Gonçalves, A.P.B.; Mattedi, S.; José, N.M.: Characterization of the rambutan peel fiber (Nephelium lappaceum) as a lignocellulosic material for technological applications. Chem. Eng. Trans. 50, 391–396 (2016). https://doi.org/10.3303/CET1650066

    Article  Google Scholar 

  20. Praveena, S.M.; Shamsudin, M.I.: Preliminary analysis of selected tropical fruit seed extracts potential as natural coagulant in water. SN Appl. Sci. (2020). https://doi.org/10.1007/s42452-020-3052-1

    Article  Google Scholar 

  21. Dhivya, S.; Ramesh, S.T.; Gandhimathi, R.; Nidheesh, P.V.: Performance of natural coagulant extracted from Plantago ovata seed for the treatment of turbid water. Water. Air. Soil Pollut. 228, 423 (2017). https://doi.org/10.1007/s11270-017-3592-1

    Article  Google Scholar 

  22. Zurina, A.Z.; Mohd Fadzli, M.; Abdul Ghani, L.A.: Preliminary study of rambutan (Nephelium lappaceum) seed as potential biocoagulant for turbidity removal. Adv. Mater. Res. 917, 96–105 (2014). https://doi.org/10.4028/www.scientific.net/amr.917.96

    Article  Google Scholar 

  23. Antov, M.G.; Šćiban, M.B.; Petrović, N.J.: Proteins from common bean (Phaseolus vulgaris) seed as a natural coagulant for potential application in water turbidity removal. Bioresour. Technol. 101, 2167–2172 (2010)

    Article  Google Scholar 

  24. Ghebremichael, K.A.: Moringa Seed and Pumice as Alternative Natural Materials for Drinking Water Treatment. KTH Land and Water Resources Engineering. KTH (2004)

    Google Scholar 

  25. Liang, Y.J.; Zhang, Y.; Guo, Z.; Xie, J.; Bai, T.; Zou, J.; Gu, N.: Ultrafast Preparation of Monodisperse Fe3O4 Nanoparticles by Microwave-Assisted Thermal Decomposition. Chem. Eur. J. 22, 11807–11815 (2016). https://doi.org/10.1002/chem.201601434

    Article  Google Scholar 

  26. Santos, T.R.T.; Silva, M.F.; Nishi, L.; Vieira, A.M.S.; Klein, M.R.F.; Andrade, M.B.; Vieira, M.F.; Bergamasco, R.: Development of a magnetic coagulant based on Moringa oleifera seed extract for water treatment. Environ. Sci. Pollut. Res. 23, 7692–7700 (2016). https://doi.org/10.1007/s11356-015-6029-7

    Article  Google Scholar 

  27. Sobsey, M.D.; Stauber, C.E.; Casanova, L.M.; Brown, J.M.; Elliott, M.A.: Point of use household drinking water filtration: a practical, effective solution for providing sustained access to safe drinking water in the developing world. Environ. Sci. Technol. 42, 4261–4267 (2008). https://doi.org/10.1021/es702746n

    Article  Google Scholar 

  28. Marobhe, N.J.; Dalhammar, G.; Gunaratna, K.R.: Simple and rapid methods for purification and characterization of active coagulants from the seeds of Vigna unguiculata and Parkinsonia aculeata. Environ. Technol. 28, 671–681 (2007). https://doi.org/10.1080/09593332808618827

    Article  Google Scholar 

  29. Memon, J.R.; Memon, S.Q.; Bhanger, M.I.; El-Turki, A.; Hallam, K.R.; Allen, G.C.: Banana peel: a green and economical sorbent for the selective removal of Cr(VI)from industrial wastewater. Colloids Surf. B Biointerfaces 70, 232–237 (2009). https://doi.org/10.1016/j.colsurfb.2008.12.032

    Article  Google Scholar 

  30. Wachirasiri, P.; Julakarangka, S.; Wanlapa, S.: The effects of banana peel preparations on the properties of banana peel dietary fibre concentrate. Songklanakarin J. Sci. Teachnol. 31, 605–611 (2009)

    Google Scholar 

  31. Singanusong, R.; Tochampa, W.; Kongbangkerd, T.; Sodchit, C.: Extraction and properties of cellulose from banana peels. Suranaree J. Sci. Technol. 21, 201–213 (2013). https://doi.org/10.14456/sjst.2014.16

    Article  Google Scholar 

  32. Suphalucksana, W.; Sangsoponjit, S.: Use of additives in durian peel silages making. Sci. Pap. Ser. D Anim. Sci. 59, 117–120 (2016)

    Google Scholar 

  33. Ranasinghe, R.A.S.N.; Maduwanthi, S.D.T.; Marapana, R.A.U.J.: Nutritional and health benefits of jackfruit (Artocarpus heterophyllus Lam.): a review. Int. J. Food Sci. 6, 1–12 (2019). https://doi.org/10.1155/2019/4327183

    Article  Google Scholar 

  34. Sundarraj, A.A.; Ranganathan, T.V.: Research journal of pharmaceutical, biological and chemical sciences physicochemical characterization of jackfruit (Artocarpus integer (Thumb.).). Res. J. Pharm. Biol. Chem. Sci. 8, 2285–2295 (2017)

    Google Scholar 

  35. Reyes, D.; Gelo, F.R.U.J.; Mary, V.; Jhane, G.: Proximate composition of juckfruit peel as influenced by fungi from vermicast through solid state fermentation. Int. J. Biol. Pharm. Allied Sci. 6, 1401–1407 (2018)

    Google Scholar 

  36. Pelissari, F.M.; Sobral, P.J.A.; Menegalli, F.C.: Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21, 417–432 (2014). https://doi.org/10.1007/s10570-013-0138-6

    Article  Google Scholar 

  37. Khawas, P.; Deka, S.C.: Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication. Carbohydr. Polym. 137, 608–616 (2016). https://doi.org/10.1016/j.carbpol.2016.06.011

    Article  Google Scholar 

  38. Zamri, M.Z.A.; Yahya, N.Y.; Ramli, R.S.; Ngadi, N.; Widia, M.: Characterization of Banana peels waste adsorbent for preliminary study of methylene blue removal from aqueous solution. IOP Conf. Ser. Mater. Sci. Eng. 697, 012033 (2019). https://doi.org/10.1088/1757-899X/697/1/012033

    Article  Google Scholar 

  39. Dahiru, M.; Zango, Z.U.; Haruna, M.A.: Cationic dyes removal using low-cost banana peel biosorbent. Am. J. Mater. Sci. 8, 32–38 (2018). https://doi.org/10.5923/j.materials.20180802.02

    Article  Google Scholar 

  40. Kumari, M.; Gupta, S.K.: A novel process of adsorption cum enhanced coagulation-flocculation spiked with magnetic nanoadsorbents for the removal of aromatic and hydrophobic fraction of natural organic matter along with turbidity from drinking water. J. Clean. Prod. 244, 118899 (2020)

    Article  Google Scholar 

  41. Lo, S.L.; Wang, Y.; Hu, C.Y.: High turbidity removal by magnetite particles. Res. J. Chem. Environ. 12, 365–370 (2008)

    Google Scholar 

Download references

Funding

The project is funded by Fundamental Research Grant Scheme (FRGS) with reference code: FRGS/1/2016/STG09/UPM/02/1 awarded by Ministry of Education (Malaysia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarva Mangala Praveena.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveena, S.M., Xin-Yi, C.K., Liew, J.Y.C. et al. Functionalized Magnetite Nanoparticle Coagulants with Tropical Fruit Waste Extract: A Potential for Water Turbidity Removal. Arab J Sci Eng 48, 8339–8348 (2023). https://doi.org/10.1007/s13369-022-06758-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06758-w

Keywords

Navigation