Skip to main content
Log in

Design of Multi-material Model for Wire Electro-discharge Machining of SS304 and SS316 Using Machine Learning and MCDM Techniques

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Machine learning and optimisation of wire electro-discharge machining process are prevalent in single-material systems, but rare in multi-material systems, particularly in stainless steel, due to the large number of variables affecting responses. In the available literature, the design of such a machine learning approach is likewise not thoroughly described. The current study was conducted to identify the efficient multi-material model incorporating six process variables and seven compositional variables using several methods, such as response surface methodology, single-output multi-layer (SOML), and multi-output multi-layer (MOML) neural networks, to understand the response behaviours such as material removal rate, kerf width, over cut, and surface roughness (Ra) of SS304 and SS316 materials. Both SOML and MOML models have been found to be capable of predicting responses with good accuracy; however, SOML models are slightly more accurate. The technique for order of preference by similarity to ideal solution (TOPSIS) method was used in conjunction with the SOML model, where the predicted responses of SOML models were used directly as inputs for process variable optimisation. The TOPSIS-generated optimum process variables for the multi-material system were validated, with each response having a prediction error of less than 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig.11
Fig.12
Fig. 13

Similar content being viewed by others

References

  1. Qudeiri, J.E.A.; Saleh, A.; Ziout, A.; Mourad, A.H.I.; Abidi, M.H.; Elkaseer, A.: Advanced electric discharge machining of stainless steels, assessment of the state of the art, gaps and future prospect. Materials (Basel) 12, 1–48 (2019)

    Google Scholar 

  2. Kaladhar, M.; Kambagowni, V.; Rao, C.S.: Machining of austenitic stainless steels—a review. Int. J. Mach. Mach. Mater. 12, 178–192 (2012)

    Google Scholar 

  3. Ahmed, Y.S.; Fox-Rabinovich, G.; Paiva, J.M.; Wagg, T.; Veldhuis, S.C.: Effect of built-up edge formation during stable state of wear in AISI 304 stainless steel on machining performance and surface integrity of the machined part. Materials (Basel) 10, 1–14 (2017)

    Article  Google Scholar 

  4. Shen, Y.; Liu, Y.; Zhang, Y.; Dong, H.; Sun, W.; Wang, X.; Zhen, C.; Ji, R.: High-speed dry electrical discharge machining. Int. J. Mach. Tools Manuf. 93, 19–25 (2015)

    Article  Google Scholar 

  5. Viswanathan, M.; Arumuganainr, K.; Nagarajan, N.: Experimental investigation on abrasive waterjet machining of stainless steel 304. IJMEIT 03, 1446–1454 (2015)

    Google Scholar 

  6. Islam, N.; Rafai, N.H.; Subramanian, S.S.: An investigation into dimensional accuracy achievable in wire-cut electrical discharge machining. Proc. World Congr. Eng. 03, 1–6 (2010)

    Google Scholar 

  7. Palraj, G.; Gowthaman, J.; Nagasundaram, N.: A study of machining characteristics of AISI 4340 alloy steel by wire electrical discharge machining process. Mater. Today Proc. 27, 1–6 (2019)

    Google Scholar 

  8. Prakash, J.U.; Juliyana, S.J.; Pallavi, P.; Moorthy, T.V.: Optimization of wire EDM process parameters for machining hybrid composites (356/B4C/fly ash) using Taguchi technique. Mater. Today Proc. 5, 7275–7283 (2018)

    Article  Google Scholar 

  9. Sharma, N.; Khanna, R.; Gupta, R.: Multi quality characteristics of WEDM process parameters with RSM. Procedia Eng. 64, 710–719 (2013)

    Article  Google Scholar 

  10. Kumar, A.; Kumar, V.; Kumar, J.: Investigation of machining characterization for wire wear ratio & MRR on pure titanium in WEDM process through response surface methodology. J. Process. Mech. Eng. 232, 108–126 (2018)

    Article  Google Scholar 

  11. Kumar, A.; Kumar, V.; Kumar, J.: Experimental investigation on material transfer mechanism in WEDM of pure titanium (Grade-2). Adv. Mater. Sci. Eng. 2013, 1–21 (2013)

    Article  Google Scholar 

  12. Raju, P.; Sarcar, M.M.M.; Satyanarayana, B.: Optimization of wire electric discharge machining parameters for surface roughness on 316L stainless steel using full factorial experimental design. Procedia Mater. Sci. 5, 1670–1676 (2014)

    Article  Google Scholar 

  13. Asgar, M.E.; Singholi, A.K.S.: Parameter study and optimization of WEDM process: a review. Mater. Sci. Eng. 404, 1–6 (2018)

    Google Scholar 

  14. Huang, J.T.; Liao, Y.S.: Optimization of machining parameters of Wire-EDM based on Grey relational and statistical analyses. Int. J. Prod. Res. 41, 1707–1720 (2013)

    Article  MATH  Google Scholar 

  15. Nandakumar, C.; Mohan, B.; Srisathirapathy, S.: Optimization of process parameters of titanium alloy grade 5 using CNC wire-cut EDM. Adv. Mater. Res. 984–985, 56–66 (2014)

    Article  Google Scholar 

  16. Singh, H.; Garg, R.: Effects of process parameters on material removal rate in WEDM. J. Achiev. Mater. Manuf. Eng. 32, 70–74 (2009)

    Google Scholar 

  17. Chiang, K.; Chang, F.: Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using grey relational analysis. J. Mater. Process. Technol. 180, 96–101 (2006)

    Article  Google Scholar 

  18. Nagaraja, S.S.R.; Chandrasekaran, K.: Optimization of parameter for metal matrix composite in wire EDM. Int. J. Eng. Sci. Res. Technol. 4, 570–574 (2015)

    Google Scholar 

  19. Mahapatra, S.S.; Patnaik, A.: Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. Int. J. Adv. Manuf. Technol. 34, 911–925 (2007)

    Article  Google Scholar 

  20. Thankachan, T.; Prakash, K.S.; Malini, R.; Ramu, S.; Sundararaj, P.; Rajendran, S.; Rammasamy, D.; Jothi, S.: Prediction of surface roughness and material removal rate in wire electrical discharge machining on aluminum based alloys/composites using Taguchi coupled Grey Relational Analysis and Artificial Neural Networks. Appl. Surf. Sci. 472, 22–35 (2019)

    Article  Google Scholar 

  21. Nain, S.S.; Garg, D.; Kumar, S.: Investigation for obtaining the optimal solution for improving the performance of WEDM of super alloy Udimet-L605 using particle swarm optimization. Eng. Sci. Technol. Int. J. 21, 261–273 (2018)

    Google Scholar 

  22. Soundararajan, R.; Ramesh, A.; Mohanraj, N.; Parthasarathi, N.: An investigation of material removal rate and surface roughness of squeeze casted A413 alloy on WEDM by multi response optimization using RSM. J. Alloys Compd. 685, 533–545 (2016)

    Article  Google Scholar 

  23. Nagarajan, P.; Murugesan, K.; Natarajan, E.: Optimum control parameters during machining of LM13 aluminum alloy under dry electrical discharge machining (EDM) with a modified tool design. Mater. Sci. 25, 270–275 (2019)

    Google Scholar 

  24. Venkatesan, P.; Sekar, R.; Elango, T.; Sathiyamoorthy, N.: Optimization of intervening variables in MicroEDM of SS 316L using a genetic algorithm and response-surface methodology. J. Mech. Eng. 60, 656–664 (2014)

    Article  Google Scholar 

  25. Shandilya, P.; Jain, P.K.; Jain, N.K.: Prediction of surface roughness during wire electrical discharge machining of SiC p/6061 Al metal matrix composite. Int. J. Ind. Syst. Eng. 12, 301–315 (2012)

    Google Scholar 

  26. RamPrasad, A.V.S.; Ramji, K.; Kolli, M.; Krishna, G.V.: Multi-response optimization of machining process parameters for wire electrical discharge machining of lead-induced Ti-6Al-4V alloy using AHP-TOPSIS method. J. Adv. Manuf. Syst. 18, 213–236 (2019)

    Article  Google Scholar 

  27. Suresh, C.H.; Venkatasubbaiah, K.; Raju, C.H.: Prioritization of WIRE EDM response parameters using analytical network process. IJRAR Int. J. Res. Anal. Rev. 5, 42–46 (2018)

    Google Scholar 

  28. Manivannan, R.; Kumar, M.P.: Multi-response optimization of micro-EDM process parameters on AISI304 steel using TOPSIS. J. Mech. Sci. Technol. 30, 137–144 (2016)

    Article  Google Scholar 

  29. Hwang, C.L.; Yoon, K.: Methods for multiple attribute decision making (1981)

  30. Muniappan, A.; Jaivaakheish, A.P.; Jayakumar, V.; Arunagiri, A.; Senthilkumar, R.: Multi objective optimization of process parameters in WEDM of aluminum hybrid composite using taguchi and topsis techniques. IOP Conf. Ser. Mater. Sci. Eng. 402, 1–10 (2018)

    Article  Google Scholar 

  31. Kumar, M.R.; Krishnaiah, A.; Kalva, R.S.: Experimental study on micro machining of SS304 by using electric discharge machining. Mater. Today Proc. 5, 27269–27276 (2018)

    Article  Google Scholar 

  32. Manivannan, R.; Kumar, M.P.: Multi-attribute decision-making of cryogenically cooled micro-EDM drilling process parameters using TOPSIS method. Mater. Manuf. Process. 32, 209–215 (2016)

    Article  Google Scholar 

  33. Devarasiddappa, D.; George, J.; Chandrasekaran, M.; Teyi, N.: Application of artificial intelligence approach in modeling surface quality of aerospace alloys in WEDM process. Procedia Technol. 25, 1199–1208 (2016)

    Article  Google Scholar 

  34. Gupta, A.; Salau, A.O.; Chaturvedi, P.; Akinola, S.A.; Nwulu, N.I.: Artificial neural networks: its techniques and applications to forecasting. In: International Conference on Automation, Computational and Technology Management, ICACTM.320–324 (2019)

  35. Mukhopadhyay, A.; Barman, T.K.; Sahoo, P.; Davim, J.P.: Modeling and optimization of fractal dimension in wire electrical discharge machining of EN 31 steel using the ANN-GA approach. Materials (Basel) 12, 1–13 (2019)

    Article  Google Scholar 

  36. Dey, S.; Chakraborty, S.: Forward and reverse mapping for WEDM process using artificial neural networks. Decis. Sci. Lett. 4, 277–288 (2015)

    Article  Google Scholar 

  37. Pradhan, M.K.; Biswas, C.K.: Neuro-fuzzy model and regression model a comparison study of MRR in electrical discharge machining of D2 tool steel. Int. J. Mech. Mechatron. Eng. 3, 1126–1131 (2009)

    Google Scholar 

  38. Chalisgaonkar, R.; Kumar, J.; Pant, P.: Prediction of machining characteristics of finish cut WEDM process for pure titanium using feed forward back propagation neural network. Mater. Today Proc. 25, 592–601 (2019)

    Article  Google Scholar 

  39. Narayanan, G.S.; Vasudevan, D.: A mathematical model for wire cut electrical discharge machine parameters using artificial neural network. Adv. Mater. Res. 984–985, 9–14 (2014)

    Article  Google Scholar 

  40. Esme, U.; Sagbas, A.; Kahraman, A.: Prediction of surface roughness in WIRE electrical discharge machining using design of experiments and neural networks. Iran J. Sci. Technol. Trans. B Eng. 33, 231–240 (2009)

    Google Scholar 

  41. Chaudhary, T.; Siddiquee, A.N.; Chanda, A.K.: Effect of wire tension on different output responses during wire electric discharge machining on AISI 304 stainless steel. Def. Technol. 15, 541–544 (2019)

    Article  Google Scholar 

  42. Choudhuri, B.; Sen, R.; Ghosh, S.K.; Saha, S.C.: Study of surface integrity and recast surface machined by Wire electrical discharge machining. Mater. Today Proc. 5, 7515–7524 (2018)

    Article  Google Scholar 

  43. Choudhuri, B.; Sen, R.; Ghosh, S.K.; Saha, S.C.: Comparative machinability characterization of wire electrical discharge machining on different specialized AISI steels. Bull. Mater. Sci. 43, 1–12 (2020)

    Article  Google Scholar 

  44. Debnath, T.; Patowari, P.K.: Fabrication of an array of micro-fins using Wire-EDM and its parametric analysis. Mater. Manuf. Process. 34, 580–589 (2018)

    Article  Google Scholar 

  45. Krzywinski, M.; Altman, N.: Visualizing samples with box plots. Nat. Am. 11, 119–120 (2014)

    Google Scholar 

  46. Sen, M.; Mukherjee, M.; Pal, T.K.: Evaluation of correlations between DP-GMAW process parameters and bead geometry. Weld J. 94, 265s–279s (2015)

    Google Scholar 

  47. Satapathy, S.C.; Udgata, S.K.; Biswal, B.N.: Modified mean square error algorithm with reduced cost of training and simulation time for character recognition in backpropagation neural network. Adv. Intell. Syst. Comput. 247, 137–145 (2014)

    Google Scholar 

  48. Feng, J.; Lu, S.: Performance analysis of various activation functions in artificial neural networks. IOP Conf. Ser. J. Phys. 1237, 1–6 (2019)

    Google Scholar 

  49. Datta, S.: Materials design using computational intelligence techniques, 1st edn. Elsevier, Amsterdam (2020)

    Google Scholar 

  50. Bishop, C.M.: Pattern recognition and machine learning (2006)

  51. Datta, S.; Chattopadhyay, P.P.: Soft computing techniques in advancement of structural metals. Int. Mater. Rev. 58, 475–504 (2013)

    Article  Google Scholar 

  52. Huang, I.B.; Keisler, J.; Linkov, I.: Multi-criteria decision analysis in environmental sciences: ten years of applications and trends. Sci. Total Environ. 409, 3578–3594 (2011)

    Article  Google Scholar 

  53. Reolon, L.W.; Laurindo, C.A.H.; Torres, R.D.; Amorim, F.L.: WEDM performance and surface integrity of Inconel alloy IN718 with coated and uncoated wires. Int. J. Adv. Manuf. Technol. 100, 1981–1991 (2019)

    Article  Google Scholar 

  54. Manjaiah, M.; Laubscher, R.F.; Kumar, A.; Basavarajappa, S.: Parametric optimization of MRR and surface roughness in wire electro discharge machining (WEDM) of D2 steel using Taguchi-based utility approach. Int. J. Mech. Mater. Eng. 11, 1–9 (2016)

    Article  Google Scholar 

  55. Naik, G.M.; Narendranath, S.: Influence of process parameters on material removal rate in wire electric discharge turning process of INCONEL 718. Int. J. Adv. Res. Sci. Eng. 5, 224–232 (2017)

    Google Scholar 

  56. Masumura, T.; Tsuchiyama, T.: Effect of carbon and nitrogen on work-hardening behavior in metastable austenitic stainless steel. ISIJ Int. 61, 617–624 (2021)

    Article  Google Scholar 

  57. Chen, Z.; Yan, Z.; Yan, H.; Han, F.: Improvement of the machining characteristics in WEDM based on specific discharge energy and magnetic field–assisted method. Int. J. Adv. Manuf. Technol. 103, 3033–3044 (2019)

    Article  Google Scholar 

  58. Mukherjee, M.; Pal, T.K.: Effect of modes of metal transfer and microstructure on corrosion behavior of welded modified ferritic stainless steel in acidic environments. J. Appl. Electrochem. 43, 347–365 (2013)

    Article  Google Scholar 

  59. Saleh, T.; Rasheed, A.N.; Muthalif, A.G.A.: Experimental study on improving μ-WEDM and μ-EDM of doped silicon by temporary metallic coating. Int. J. Adv. Manuf. Technol. 78, 1651–1663 (2015)

    Article  Google Scholar 

  60. Mouralova, K.; Zahradnicek, R.; Benes, L.; Prokes, T.; Hrdy, R.; Fries, J.: Study of micro structural material changes after WEDM based on TEM lamella analysis. Metals (Basel) 10, 1–17 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Department of Mechanical Engineering, NIT Silchar, Assam, India, and CSIR-CMERI, Durgapur, West Bengal, India, for providing the guidance, opportunity, and facilities to carry out the research work.

Funding

This article is not received any grant from any funding agency in the public, commercial, or others.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manidipto Mukherjee.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interest that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Singh, Y., Mukherjee, M. et al. Design of Multi-material Model for Wire Electro-discharge Machining of SS304 and SS316 Using Machine Learning and MCDM Techniques. Arab J Sci Eng 47, 15755–15778 (2022). https://doi.org/10.1007/s13369-022-06757-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06757-x

Keywords

Navigation