Skip to main content
Log in

A New Design for Compact Floating-Gate Transistor Based Low-Voltage Four-Quadrant Analog Current Multiplier

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a new compact design for low-voltage low-power four-quadrant current mode analog multiplier based on floating-gate transistors. The proposed multiplier exploits multi-input and square-law characteristics of floating-gate transistor operating in saturation mode to generate addition and squaring operation of input currents. The extra current square terms and offset current component are eliminated with the help of three n-channel metal–oxide–semiconductor transistors operating in saturation region. Further, to increase the operating range of the proposed multiplier, two of the metal–oxide–semiconductor transistors are replaced by floating-gate transistors. These transistors provide low power operation along with threshold voltage controllability while offering the advantage of simple circuitry. To evaluate the circuit operation, simulations are done in Ltspice with the help of 180 nm technology file. The proposed circuit operates at 1 V (± 0.5 V) and consumes total power and static power of 24.56 µW and 3.93 µW, respectively. The circuit operates with a maximum linearity error of 0.88%, a total harmonic distortion of 0.39% at 1 MHz and offers a bandwidth of 919.22 MHz. In order to obtain a fair comparison, various state-of-the-art multipliers reported in the literature have been simulated using similar platform as used by the authors for their proposed work. These simulation results confirm that the proposed multiplier operates at the lowest supply voltage while consuming least quiescent power. Further, it has also been observed that the proposed circuit requires current mirrors and biasing voltage sources only, as compared to complex current addition and subtraction circuits along with biasing current sources required in existing multiplier circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

% Error|λ :

% Error in output current due to channel length modulation effect

% Error| R :

% Error in output current due to mismatch in resistances

% Error| µ :

% Error in output current due to mobility degradation

% Error| K :

% Error in output current due to transconductance mismatch

V E :

An intermediate voltage term, used for simplicity of equations and is equal to VB/3–VtnVss

V B :

Biasing voltage

λ :

Channel length modulation parameter

V G :

Gate voltage

I xI y :

Input currents

R L :

Load resistor

µ n :

Mobility of electron

V ss :

Negative supply voltage

I out :

Output current

I out |λ :

Output current with channel length modulation effect

I out | µ :

Output current with mobility degradation effect

I out | R :

Output current with variations in resistances

I out | K :

Output current with variations in transconductance parameter

V dd :

Positive supply voltage

R a, R b, R c and R d :

Resistors connected at secondary input gate terminals of FGMOS

I DS n sat. :

Saturation drain current of nth transistor

V tn :

Threshold voltage of n-channel transistor

V tp :

Threshold voltage of p-channel transistor

θ :

Technological parameter that is inversely proportional to the oxide thickness

K n :

Transconductance parameter of n-channel transistor

K n| µ :

Transconductance parameter of n-channel transistor with mobility degradation

V DS :

Voltage difference between drain and source terminals of a transistor

V GS :

Voltage difference between gate and source terminals of a transistor

References

  1. Saatlo, A.N.; Özoguz, İ.S.: Design of a high-linear, high-precision analog multiplier, free from body effect. Turk. J. Electr. Eng. Comput. Sci. 24(3), 820–832 (2016). https://doi.org/10.3906/elk-1307-159

    Article  Google Scholar 

  2. Tanno, K.; Ishizuka, O.; Tang, Z.: Four-quadrant CMOS current-mode multiplier independent of device parameters. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47(5), 473–477 (2000). https://doi.org/10.1109/82.842116

    Article  Google Scholar 

  3. Elwakil, A.; Maundy, B.; Elamien, M.B., et al.: A four-quadrant current multiplier/divider cell with four transistors. Analog Integr. Circ. Signal Process. 95, 173–179 (2018)

    Article  Google Scholar 

  4. Liu, B.-D.; Huang, C.-Y.; Wu, H.-Y.: Modular current-mode defuzzification circuit for fuzzy logic controllers. Electron. Lett. 30(16), 1287–1288 (1994)

    Article  Google Scholar 

  5. Oliaei, O.; Loumeau, P.: Four-quadrant class AB CMOS current multiplier. Electron. Lett. 32(25), 2327–2329 (1996)

    Article  Google Scholar 

  6. Jindapetch, N.; Chewae, S.; Phukpattaranont, P.: FPGA implementations of an ADALINE adaptive filter for power-line noise cancellation in surface electromyography signals. Measurement 45(3), 405–414 (2012). https://doi.org/10.1016/j.measurement.2011.11.004

    Article  Google Scholar 

  7. Hu, Y.; Sawan, M.: A fully integrated low-power BPSK demodulator for implantable medical devices. IEEE Trans. Circuits Syst. I Regul. Pap. 52(12), 2552–2562 (2005)

    Article  Google Scholar 

  8. Sotner, R.; Polak, L.; Jerabek, J.; Petrzela, J.; Kledrowetz, V.: Analog multipliers-based double output voltage phase detector for low-frequency demodulation of frequency modulated signals. IEEE Access 9, 93062–93078 (2021)

    Article  Google Scholar 

  9. Maryan, M.M.; Azhari, S.J.; Ghanaatian, A.: Low power FGMOS-based four-quadrant current multiplier circuits. Analog Integr. Circ. Signal Process. 95(1), 115–125 (2018). https://doi.org/10.1007/s10470-018-1120-x

    Article  Google Scholar 

  10. Ettaghzouti, T.; Hassen, N.; Besbes, K.: High performance low voltage low power voltage mode analog multiplier circuit. In: 2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), pp. 527–531. IEEE (2016, December). https://doi.org/10.1109/SETIT.2016.7939926

  11. Rajpoot, J.; Maheshwari, S.: High performance four-quadrant analog multiplier using DXCII. Circuits Syst. Signal Process. 39, 54–64 (2020)

    Article  Google Scholar 

  12. Ozer, E.: A DTMOS based four-quadrant analog multiplier. Electrica 20(2), 207–217 (2020)

    Article  Google Scholar 

  13. Sanchez, A.D.; Ardila, J.C.M.; Mejia, G.Z., et al.: A four quadrant high-speed CMOS analog multiplier based on the flipped voltage follower cell. AEU Int. J. Electron. Commun. 130, 153582 (2021)

    Article  Google Scholar 

  14. Borkar, B.D.; Tijare, A.D.: VLSI implementation of current mode analog multiplier. In: 2015 International Conference on Communications and Signal Processing (ICCSP), pp. 0531–0534. IEEE (2015, April). https://doi.org/10.1109/ICCSP.2015.7322541

  15. Naderi, A.; Khoei, A.; Hadidi, K.; Ghasemzadeh, H.: A new high speed and low power four-quadrant CMOS analog multiplier in current mode. AEU Int. J. Electron. Commun. 63(9), 769–775 (2009). https://doi.org/10.1016/j.aeue.2008.06.002

    Article  Google Scholar 

  16. De la Cruz-Blas, C.A.; Thomas-Erviti, G.; Algueta-Miguel, J.M.; López-Martín, A.: CMOS analogue current-mode multiplier/divider circuit operating in triode-saturation with bulk-driven techniques. Integration 59, 243–246 (2017). https://doi.org/10.1016/j.vlsi.2017.06.001

    Article  Google Scholar 

  17. Aghaei, T.; Saatlo, A.N.: A new strategy to design low power translinear based CMOS analog multiplier. Integration 69, 180–188 (2019)

    Article  Google Scholar 

  18. Aghaei, T.; Saatlo, A.N.: An efficient architecture for accurate and low power CMOS analog multiplier. J. Circuits Syst. Comput. 30(3), 2150045 (2020)

    Article  Google Scholar 

  19. Santos, R.B.; Souza, G.A.; Faria, L.D.: A novel four-quadrant/one-quadrant multiplier circuit. AEU Int. J. Electron. Commun. 138, 153865 (2021)

    Article  Google Scholar 

  20. Chang, C.C.; Liu, S.I.: Weak inversion four-quadrant multiplier and two-quadrant divider. Electron. Lett. 34(22), 2079–2080 (1998). https://doi.org/10.1049/el:19981496

    Article  Google Scholar 

  21. Tartagni, M.; Perona, P.: Computing centroids in current-mode technique. Electron. Lett. 29(21), 1811–1813 (1993)

    Article  Google Scholar 

  22. Khoshnevis, S.A.; Shahabi, F.; Talkhouncheh, R.G.: Four-quadrant weak inversion analog multiplier in the 180 nm technology for biomedical applications. J. Soft Comput. Decis. Supp. Syst. 2019(6), 15–22 (2019)

    Google Scholar 

  23. Beyraghi, N.; Khoei, A.; Hadidi, K.: CMOS design of a four-quadrant multiplier based on a novel squarer circuit. Analog Integr. Circ. Signal Process. 80(3), 473–481 (2014). https://doi.org/10.1007/s10470-014-0367-0

    Article  Google Scholar 

  24. Yildirim, M.: Design of low-voltage and low-power DTMOS based analog multiplier utilizing current squarer. Int. J. Electron. Lett. 9(1), 1–13 (2021)

    Article  Google Scholar 

  25. Mowlavi, S.; Aram Baharmast, A.; Sobhi, J.; Koozehkanani, Z.D.: A novel current-mode low-power adjustable wide input range four-quadrant analog multiplier. Integr. VLSI J. 63, 130–137 (2018)

    Article  Google Scholar 

  26. Aloui, I.; Hassen, N.; Besbes, K.: A CMOS current mode four quadrant analog multiplier free from mobility reduction. AEU Int. J. Electron. Commun. 82, 119–126 (2017)

    Article  Google Scholar 

  27. Badwal, D.; Kaur, J.; Chaudhary, S.R.: FGMOS based current mirror. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(8), 155–159 (2014)

    Google Scholar 

  28. Sharroush, S.M.: Understanding the behavior of RTD-loaded NMOS inverter through compact-form analysis. Ain Shams Eng. J. 9(4), 2453–2478 (2018). https://doi.org/10.1016/j.asej.2017.06.001

    Article  Google Scholar 

  29. Gray, P.R.; Meyer, R.G.: Analysis and Design of Analog Integrated Circuits. Wiley, New York (2001)

    Google Scholar 

  30. Yadav, N.; Rai, S.K.; Pandey, R.: New grounded and floating memristor emulators using OTA and CDBA. Int. J. Circuit Theory Appl. 48(7), 1154–1179 (2020). https://doi.org/10.1002/cta.2774

    Article  Google Scholar 

  31. Maryan, M.M.; Azhari, S.J.: Ultra low-power low-voltage FGMOS based-configurable analog block for current-mode fractional-power functions. Microelectron. J. 64, 99–105 (2017). https://doi.org/10.1016/j.mejo.2017.05.001

    Article  Google Scholar 

  32. Narang, N.; Aggarwal, B.; Gupta, M.: DTMOS and FD-FVF based low voltage high performance Voltage differencing transconductance amplifier (VDTA) and its application in MISO filter. Microelectron. J. 63, 66–74 (2017)

    Article  Google Scholar 

  33. Kumngern, M.; Dejhan, K.: Versatile dual-mode class-AB four-quadrant analog multiplier. Int. J. Electron. Commun. Eng. 2(8), 1733–1740 (2008). https://doi.org/10.5281/zenodo.1328362

    Article  Google Scholar 

  34. Oliveira, V.J.; Oki, N.: Low voltage four-quadrant current multiplier: an improved topology for n-well CMOS process. Analog Integr. Circuits Signal Process. 65(1), 61–66 (2010). https://doi.org/10.1007/s10470-009-9412-9

    Article  Google Scholar 

  35. Beyraghi, N.; Khoei, A.: CMOS design of a low power and high precision four-quadrant analog multiplier. AEU Int. J. Electron. Commun. 69(1), 400–407 (2015). https://doi.org/10.1016/j.aeue.2014.10.015

    Article  Google Scholar 

  36. Al-Absi, M.A.; As-Sabban, I.A.: A new highly accurate CMOS current-mode four-quadrant multiplier. Arab. J. Sci. Eng. 40(2), 551–558 (2015). https://doi.org/10.1007/s13369-014-1551-3

    Article  Google Scholar 

  37. Khoshnevis, S.A.; Shahabi, F.; Talkhouncheh, R.G.: Four-quadrant weak inversion analog multiplier in the 180 nm technology for biomedical applications. J. Soft Comput. Decis. Supp. Syst. 6(5), 15–22 (2019)

    Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge Prof. Raj Senani for his valuable guidance and continuous support during the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhawna Aggarwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, B., Dhawan, R. & Narang, N. A New Design for Compact Floating-Gate Transistor Based Low-Voltage Four-Quadrant Analog Current Multiplier. Arab J Sci Eng 47, 14455–14470 (2022). https://doi.org/10.1007/s13369-022-06742-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06742-4

Keywords

Navigation