Skip to main content

Advertisement

Log in

Experimental Analysis of Melting Behavior of Capric Acid (CA)–Stearic Acid (SA) Eutectic Mixture and its 3D Numerical Solution of Natural Convection in a Cup

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Computational studies were performed to investigate the melting process in a cubical closed space. Capric acid (CA)–stearic acid (SA) eutectic mixture is chosen as a phase change material (PCM). Some thermo-physical properties such as melting temperature, latent heat of fusion, specific heat capacity, thermal conductivity, thermal expansion coefficient, density and viscosity of CA-SA eutectic mixture prepared as PCM were measured. Considering these measured properties, the melting behavior of the prepared eutectic PCM was simulated numerically with finite volume method in a three-dimensional cavity. Non-isothermal heating conditions throughout phase change process of the PCM are considered in the numerical modeling study. It is shown that temperature difference has a significant impact on the melting, while its behavior changes for various cross sections. It is observed that the melting does not change after 80 min for the studied PCM. Significant variations for the melting behavior are observed between 2D and 3D configurations. Melt fraction is only 1.20% higher in 3D case as compared to 2D case at t = 130 min and Gr = 1.8 × 105, while this value is 1.08% at Gr = 3.6 × 104.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

f:

Liquid fraction

g:

Gravitational acceleration (m/s2)

Gr:

Grashof number

h:

Local heat transfer coefficient (W/m2K)

H:

Total enthalpy (J/kg)

k:

Thermal conductivity (W/mK)

L:

Latent heat (J/kg)

Nu:

Nusselt number

p:

Pressure (Pa)

Pr:

Prandtl number

Ra:

Rayleigh number

Ste:

Stefan number

T:

Temperature (K)

t:

Time (s)

u, v, w:

x–y-z Velocity components (m/s)

U, V, W:

Dimensionless velocity components

x, y, z:

Cartesian coordinates (m)

X, Y, Z:

Dimensionless coordinates

α :

Thermal diffusivity (m2/s)

β :

Thermal expansion coefficient (1/K)

τ :

Non-dimensional time

c:

Cold

h:

Hot

m:

Melting

ave:

Average

ref:

Reference

References

  1. Hasan, A.; McCormack, S.; Huang, M.; Norton, B.: Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Sol. Energy 84, 1601–1612 (2010)

    Article  Google Scholar 

  2. Park, J.; Kim, T.; Leigh, S.B.: Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions. Sol. Energy 105, 561–574 (2014)

    Article  Google Scholar 

  3. Huang, M.; Eames, P.; Norton, B.: Thermal regulation of building-integrated photovoltaics using phase change materials. Int. J. Heat Mass Transf. 47, 2715–2733 (2003)

    Article  Google Scholar 

  4. Lin, W.; Ma, Z.; Sohel, M.I.; Cooper, P.: Development and evaluation of a ceiling ventilation system enhanced by solar photovoltaic thermal collectors and phase change materials. Energy Convers. Manag. 88, 218–230 (2014)

    Article  Google Scholar 

  5. Smith, C.J.; Forster, P.M.; Crook, R.: Global analysis of photovoltaic energy output enhanced by phase change material cooling. Appl. Energy 126, 21–28 (2014)

    Article  Google Scholar 

  6. Ho, C.; Tanuwijava, A.; Lai, C.M.: Thermal and electrical performance of a BIPV integrated with a microencapsulated phase change material layer. Energy Build. 50, 331–338 (2012)

    Article  Google Scholar 

  7. Brano, V.L.; Ciulla, G.; Piacentino, A.; Cardona, F.: Finite difference thermal model of a latent heat storage system coupled with a photovoltaic device: description and experimental validation. Renew. Energy 68, 181–193 (2014)

    Article  Google Scholar 

  8. Pahamli, Y.; Hosseini, M.J.; Ranjbar, A.A.; Bahrampoury, R.: Analysis of the effect of eccentricity and operational parameters in PCM-filled single-pass shell and tube heat exchangers. Renew. Energy 97, 344–357 (2016)

    Article  Google Scholar 

  9. Jin, X.; Medina, M.A.: Zhang XNumerical analysis for the optimal location of a thin PCM layer in frame walls. Appl. Thermal Eng. 103, 1057–1063 (2016)

    Article  Google Scholar 

  10. Ismail, K.A.R.; de Jesus, A.B.: Modeling and solution of the solidification problem of PCM around a cold cylinder. Numer. Heat Transfer Part A Appl. 36, 95–114 (1999)

    Article  Google Scholar 

  11. Srivatsa, P.V.S.S.; Baby, R.; Balaji, C.: Numerical investigation of PCM based heat sinks with embedded metal foam/crossed plate fins. Numer. Heat Transfer Part A Appl. 66, 1131–1153 (2014)

    Article  Google Scholar 

  12. Yilbas, B.S.; Shuja, S.Z.; Shaukat, M.M.: Thermal characteristics of latent heat thermal storage: comparison of aluminum foam and mesh configurations. Numer. Heat Transfer Part A Appl. 68, 99–116 (2015)

    Article  Google Scholar 

  13. Gharebaghi, M.; Sezai, I.: Enhancement of heat transfer in latent heat storage modules with internal fins. Numer. Heat Transfer Part A Appl. 53, 749–765 (2007)

    Article  Google Scholar 

  14. Jmal, I.; Baccar, M.: Numerical study of PCM solidification in a finned tube thermal storage including natural convection. Appl. Therm. Eng. 84, 320–330 (2015)

    Article  Google Scholar 

  15. Mumtaz, M.; Khan, A.; Ibrahim, N.I.; Mahbubul, I.M.; Ali, H.M.; Al-Sulaiman, F.A.: Evaluation of solar collector designswith integrated latent heat thermal energy storage: a review. Sol. Energy 166, 334–350 (2018)

    Article  Google Scholar 

  16. Piratheepan, M.; Anderson, T.: An experimental investigation of turbulent forced convection heat transfer by a multi-walled carbon-nanotube nanofluid. Int. Commun. Heat Mass Transfer 57, 286–290 (2014)

    Article  Google Scholar 

  17. Kamali, R.; Binesh, A.: Numerical investigation of heat transfer enhancement using carbon nanotube based non-Newtonian nanofluids. Int. Commun. Heat Mass Transfer 37, 1153–1157 (2010)

    Article  Google Scholar 

  18. Murshed, S.; de Castro, C.A.N.: Superior thermal features of carbon nanotubes-based nano uids - a review. Renew. Sustain. Energy Rev. 37, 155–167 (2014)

    Article  Google Scholar 

  19. Sheikholeslami, M.: Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J. Taiwan Inst. Chem. Eng. 86, 25–41 (2018)

    Article  Google Scholar 

  20. Sheikholeslami, M.; de Haq, R.; Shafee, A.; Li, Z.: Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int. J. Heat Mass Transfer. 130, 1322–1342 (2019)

    Article  Google Scholar 

  21. Ghalambaz, M.; Chamkha, A.J.; Wen, D.: Natural convective flow and heat transfer of nano-encapsulated phase change materials (NEPCMs) in a cavity. Int. J. Heat Mass Transf. 138, 738–749 (2019)

    Article  Google Scholar 

  22. Boukani, N.H.; Dadvand, A.; Chamkha, A.J.: Melting of a nano-enhanced phase change material (NePCM) in partially-filled horizontal elliptical capsules with different aspect ratios. Int. J. Mech. Sci. 138, 164–177 (2018)

    Article  Google Scholar 

  23. Sadeghi, H.M.; Babayan, M.; Chamkha, A.J.: Investigation of using multi-layer PCMs in the tubular heat exchanger with periodic heat transfer boundary condition. Int. J. Heat Mass Transfer. 147, 118970 (2020)

    Article  Google Scholar 

  24. Selimefendigil, F., Öztop, H. F.: Natural convection and melting of NEPCM in a corrugated cavity under the effect of magnetic field J. Therm. Anal. Calorim. 1–16 (2019)

  25. Bondarenko, D.S.; Sheremet, M.A.; Oztop, H.F.; Ali, M.E.: Impacts of moving wall and heat-generating element on heat transfer and entropy generation of Al2O3/H2O nanofluid. J. Therm. Anal. Calorim. 136, 673–686 (2019)

    Article  Google Scholar 

  26. Rashidi, S.; Shamsabadi, H.; Esfahani, J.A.; Harmand, S.: A review on potentials of coupling PCM storage modules to heat pipes and heat pumps. J. Thermal Anal. Calorim. 140, 1655–1713 (2020)

    Article  Google Scholar 

  27. Jeong, S.G.; Cha, J.; Kim, S.; Seo, J.; Lee, J.H.; Kim, S.: Preparation of thermal-enhanced epoxy resin adhesive with organic PCM for applying wood flooring. J Therm Anal Calorim. 117, 1027–1034 (2014)

    Article  Google Scholar 

  28. Liu, L.; Zhang, X.; Xu, X.; Zhao, Y.; Zhang, S.: The research progress on phase change hysteresis affecting the thermal characteristics of PCMs: a review. J. Mol. Liq. 317, 113760 (2020)

    Article  Google Scholar 

  29. Voile, V.; Prakash, C.: A fixed grid numerical modeling methodology for convection diffusion mushy region phase-change problem. Int. J. Heat Mass Transfer 30, 1709–1719 (1987)

    Article  Google Scholar 

  30. Elsanusi, O.E.; Nsofor, E.C.: Melting of multiple PCMs with different arrangements inside a heat exchanger for energy storage. Appl. Thermal Eng. 185, 116046 (2021)

    Article  Google Scholar 

  31. Sarı, A.; Karaipekli, A.; Kaygusuz, K.: Capric acid and stearic acid mixture impregnated with gypsum wallboard for low-temperature latent heat thermal energy storage. Int. J. Energy Res. 3, 154–160 (2008)

    Article  Google Scholar 

  32. Brent, A.D.; Voller, V.R.; Reid, K.T.J.: Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer. Heat Transfer Part A Appl. 13, 297–318 (1988)

    Google Scholar 

  33. Bouzennada, T.; Mechighel, F.; Filali, A.; Ghachem, K.; Kolsi, L.: Numerical investigation of heat transfer and melting process in a PCM capsule: effects of inner tube position and Stefan number. Case Stud. Thermal Eng. 27, 101306 (2021)

    Article  Google Scholar 

  34. Mehryan, S.A.M.; Tahmasebi, A.; Izadi, M.; Ghalambaz, M.: Melting behavior of phase change materials in the presence of a non-uniform magnetic-field due to two variable magnetic sources. Int. J. Heat Mass Transfer. 149, 119184 (2020)

    Article  Google Scholar 

  35. Bondareva, N.S.; Sheremet, M.A.: 3D natural convection melting in a cubical cavity with a heat source. Int. J. Therm. Sci. 115, 43–53 (2017)

    Article  Google Scholar 

  36. Dhaidan, S.N.; Khodadadi, J.M.; Al-Hattab, T.A.; Mashat, S.M.: Experimental and numerical investigation of melting of phase change material/nanoparticle suspensions in a square container subjected to a constant heat flux. Int. J. Heat Mass Transf. 66, 672–683 (2013)

    Article  Google Scholar 

  37. Versteeg, H., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, Harlow, UK (2007)

    Google Scholar 

  38. Moukalled, F., Mangani, K., Darwish, M.: The Finite Volume Method in Computational Fluid Dynamics. Springer. (2015)

  39. De Césaro Oliveski, R.; Becker, F.; Rocha, L.A.O.; Biserni, C.; Eberhardt, G.E.S.: Design of fin structures for phase change material (PCM) melting process in rectangular cavities. J. Energy Storage. 35, 102337 (2021)

    Article  Google Scholar 

  40. Bechiri, M.; Mansouri, K.: Study of heat and fluid flow during melting of PCM inside vertical cylindrical tube. Int. J. Therm. Sci. 135, 235–246 (2019)

    Article  Google Scholar 

  41. Abdollahzadeh, M.; Esmaeilpour, M.: Enhancement of phase change material (PCM) based latent heat storage system with nano fluid and wavy surface. Int. J. Heat Mass Transf. 80, 376–385 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan F. Öztop.

Ethics declarations

Ethical Statement

There is no ethical problem in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coşanay, H., Selimefendigil, F., Öztop, H.F. et al. Experimental Analysis of Melting Behavior of Capric Acid (CA)–Stearic Acid (SA) Eutectic Mixture and its 3D Numerical Solution of Natural Convection in a Cup. Arab J Sci Eng 47, 15575–15589 (2022). https://doi.org/10.1007/s13369-022-06719-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06719-3

Keywords

Navigation