Skip to main content
Log in

Thermal Analysis of Steady Simulation of Free Convection from Concentric Elliptical Annuli of a Horizontal Arrangement

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A steady simulation of the laminar free convection heat transfer is carried out between two cylinders of different cross sections. The inner cylinder is elliptical with different values of aspect ratio, while the outer cylinder is maintained circular. The numerical simulations are considered in two dimensions within the laminar regime. The computer software ANSYS-CFX is used to solve numerically the principal equations that describe the conservation of mass, momentum, and energy. These equations are considered for different values of the Rayleigh number (Ra = 103, 104, and 105), the Prandtl number (Pr) is chosen between 0.701 and 100, and the aspect ratio (E) varies from 0.1 to 1. The computational results show the influence of the studied parameters on the motion of fluid induced by the thermal buoyancy force. Also, the rate of heat transfer is evaluated. The contours of isotherm and streamline are depicted to analyze the temperature distribution and fluid motion, respectively. Furthermore, the heat transfer rate between the surface of the inner cylinder and fluid is evaluated according to the average value of the Nusselt number. It was found that the elliptical form of the inner cylinder has a tendency to boost the rate of heat transfer more than the circular form. Also, a low value of the Prandtl number creates some counter-rotating zones in the lower part of the computed domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a :

Big elliptical radius,(m)

b :

Small elliptical radius, (m)

E :

Aspect ratio, (−)

g :

Gravitational acceleration, (m.s2)

L :

Distance between cylinders, (m)

n s :

Normal vector, ( −)

Nu :

Nusselt number, ( −)

P :

Dimensionless pressure, (− 

Pr :

Prandtl number, ( −)

Ra :

Rayleigh number, ( −)

RR :

Radii ratio, ( −)

T :

Temperature, (K

α :

Thermal diffusivity, (m2. s−1)

β :

Thermal expansion coefficient, (K−1)

ϕ :

Angular angle, (degree)

Ɵ :

Dimensionless temperature, ( −)

µ :

Dynamic viscosity, (kg. m−1.s−1)

ρ :

Density, (kg. m−3

c:

Cold surface

h:

Hot surface

References

  1. Shu, C.; Yao, Q.; Yeo, K.S.; Zhu, Y.D.: Numerical analysis of flow and thermal fields in arbitrary eccentric annulus by differential quadrature method. J Heat Mass Transf 38(7–8), 597–608 (2002). https://doi.org/10.1007/s002310100193

    Article  Google Scholar 

  2. El-Shaarawi, M.A.I.; Mokheimer, E.M.A.; Jamal, A.: Conjugate effects on steady laminar natural convection heat transfer in vertical eccentric annuli. Int J Comput Methods Eng Sci Mech 6(4), 235–250 (2005). https://doi.org/10.1080/155022891009288

    Article  MATH  Google Scholar 

  3. Perlmutter, M.; Howell, J.R.: Radiant transfer through a gray gas between concentric cylinders using Monte Carlo. Trans ASME J Heat Transf 86(2), 169–179 (1964). https://doi.org/10.1115/1.3687090

    Article  Google Scholar 

  4. Kuehn, T.H.; Goldstein, R.J.: An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders. J. Fluid Mech. 74(4), 695–719 (1976). https://doi.org/10.1017/S0022112076002012

    Article  MATH  Google Scholar 

  5. Heyda, J.F.: A green function solution for the laminar incompressible flow between non concentric cylinders. J Franklin Institute 267, 25–34 (1959)

    Article  MathSciNet  Google Scholar 

  6. Kuehn, T.H.; Goldstein, R.J.: An experimental study of natural convection heat transfer in concentric and eccentric horizontal cylindrical annuli. ASME J Heat Transfer 100(4), 635–640 (1978)

    Article  Google Scholar 

  7. Ho, C.J.; Lin, Y.H.; Chen, T.C.: A numerical study of natural convection in concentric and eccentric horizontal cylindrical annuli with mixed boundary conditions. Int J Heat Fluid Flow 10(1), 40–47 (1989)

    Article  Google Scholar 

  8. Projahn, U.; Reiger, H.; Beer, H.: Numerical analysis of laminar natural convection between concentric and eccentric cylinders. J Numer Heat Transfer 4(2), 131–146 (1981). https://doi.org/10.1080/01495728108961783

    Article  Google Scholar 

  9. Ha, M.Y.; Kim, J.G.: Numerical simulation of natural convection in annuli with internal fns. J Mech Sci Technol 18(4), 718–730 (2004)

    Google Scholar 

  10. Hadidi, H.; Kamali, R.: Numerical simulation of a non-equilibrium electrokinetic micro/nano fluidic mixer. J Micromech Microeng (2016). https://doi.org/10.1088/0960-1317/26/3/035019

    Article  Google Scholar 

  11. Matin, M.H.; Khan, A.W.: Laminar natural convection of non-Newtonian power-law fluids between concentric circular cylinders. Int. Commun. Heat Mass Transfer 43, 112–121 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.02.006

    Article  Google Scholar 

  12. Nada, S.A.; Said, M.A.: Effects of fins geometries, arrangements, dimensions and numbers on natural convection heat transfer characteristics in finned-horizontal annulus. Int. J. Therm. Sci. 137, 121–137 (2019). https://doi.org/10.1016/j.ijthermalsci.2018.11.026

    Article  Google Scholar 

  13. Abu-Nada, E.; Masoud, Z.; Hijazi, A.: Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int. Commun. Heat Mass Transfer 35(5), 657–665 (2008). https://doi.org/10.1016/j.icheatmasstransfer.2007.11.004

    Article  Google Scholar 

  14. Roy, N.C.: Natural convection in the annulus bounded by two wavy wall cylinders having a chemically reacting fluid. Int J Heat Mass Transfer 138, 1082–1095 (2019)

    Article  Google Scholar 

  15. Pandey, S.; Park, Y.G.; Ha, M.Y.: An exhaustive review of studies on natural convection in enclosures with and without internal bodies of various shapes. Int J Heat Mass Transfer 138, 762–795 (2019)

    Article  Google Scholar 

  16. Vanita, A.K.: Effect of radial magnetic field on natural convection flow in alternate conducting vertical concentric annuli with ramped temperature. Eng Sci Tech 19(3), 1436–1451 (2016). https://doi.org/10.1016/j.jestch.2016.04.010

    Article  Google Scholar 

  17. Masoumi, H.; Aghighi, M.S.; Ammar, A.; Nourbakhsh, A.: Laminar natural convection of yield stress fluids in annular spaces between concentric cylinders. Int J Heat Mass 138, 1188–1198 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.092

    Article  Google Scholar 

  18. Aly, A.M.: Natural convection over circular cylinders in a porous enclosure filled with a nanofluid under thermo-diffusion effects. J. Taiwan Inst. Chem. Eng. 70, 88–103 (2017). https://doi.org/10.1016/j.jtice.2016.10.050

    Article  Google Scholar 

  19. Nobari, M.R.H.; Mehrabani, M.T.: A numerical study of fluid flow and heat transfer in eccentric curved annuli. Int. J. Therm. Sci. 49(2), 380–396 (2010). https://doi.org/10.1016/j.ijthermalsci.2009.07.003

    Article  Google Scholar 

  20. Laidoudi, H.: Buoyancy-driven flow in annular space from two circular cylinders in tandem arrangement. Metallurg Mater Eng 26(1), 87–102 (2020)

    Article  Google Scholar 

  21. Laidoudi, H.; Helmaoui, M.; Bouzit, M.; Ghenaim, A.: Natural convection of Newtonian fluids between two concentric cylinders of a special cross-sectional form. Thermal Sci 25, 3701–3714 (2021)

    Article  Google Scholar 

  22. Selimefendigil, F.; Oztop, H.F.; Mahian, O.: Effects of a partially conductive partition in MHD conjugate convection and entropy generation for a horizontal annulus. J Thermal Anal Calorim 139(2), 1537–1542 (2020)

    Article  Google Scholar 

  23. Shadlaghani, A.; Farzaneh, M.; Shahabadi, M.; Tavakoli, M.R.; Safaei, M.R.; Mazinani, I.: Numerical investigation of serrated fins on natural convection from concentric and eccentric annuli with different cross sections. J. Therm. Anal. Calorim. 135(2), 1429–1442 (2019). https://doi.org/10.1007/s10973-018-7542-y

    Article  Google Scholar 

  24. Touzani, S.; Idrissi, A.; Cheddadi, A.; Ouazzani, M.T.: Numerical study of laminar natural convection in a finned annulus: low isothermal blocks positions. J Eng Phys Thermophy 92(4), 1064–1071 (2019)

    Article  Google Scholar 

  25. Dey, D.; Khound, A.S.: Free convective oldroyd fluid flow through an annulus under transverse magnetic field using modified bessel functions. Int J Heat Technology 37(1), 41–47 (2019)

    Article  Google Scholar 

  26. Abdulrazzaq, T.; Togun, H.; Reza, S.M.; Kazi, S.N.; Ariffin, M.K.A.B.M.; Adam, N.M.: Effect of flow separation of TiO2 nanofluid on heat transfer in the annular space of two concentric cylinders. Thermal Sci (2020). https://doi.org/10.2298/TSCI180709321A

    Article  Google Scholar 

  27. Ghalambaz, M.; Mehryan, S.A.M.; Mozaffari, M.; Zadeh, S.M.H.; Pour, M.S.: Study of thermal and hydrodynamic characteristics of water-nano-encapsulated phase change particles suspension in an annulus of a porous eccentric horizontal cylinder. Int. J. Heat Mass Transf. 156, 119792 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119792

    Article  Google Scholar 

  28. Alsabery, A.I.; Ghalambaz, M.; Armaghani, T.; Chamkha, A.; Hashim, I.; Saffari Pour, M.: Role of rotating cylinder toward mixed convection inside a wavy heated cavity via two-phase nanofluid concept. Nanomaterials 10(6), 1138 (2020)

    Article  Google Scholar 

  29. Rashidi, M.M.; Bég, A.O.; Freidooni, M.N.; Hosseini, A.; Gorla, R.S.R.: Homotopy simulation of axisymmetric laminar mixed convection nanofluid boundary layer flow over a vertical cylinder. Theoret. Appl. Mech. 39(4), 365–390 (2012). https://doi.org/10.2298/TAM1204365R

    Article  MathSciNet  MATH  Google Scholar 

  30. Selimefendigil, F.; Ismael, M.A.; Chamkha, A.J.: Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder. Int. J. Mech. Sci. 124, 95–108 (2017). https://doi.org/10.1016/j.ijmecsci.2017.03.007

    Article  Google Scholar 

  31. Selimefendigil, F.; Öztop, H.F.: Mixed convection of nanofluids in a three dimensional cavity with two adiabatic inner rotating cylinders. Int J Heat Mass Transfer 117, 331–343 (2018)

    Article  Google Scholar 

  32. Tayebi, T.; Öztop, H.F.: Entropy production during natural convection of hybridnanofluid in an annular passage between horizontal confocal elliptic cylinders. Int J Mech Sci. 171, 105378 (2020)

    Article  Google Scholar 

  33. Laidoudi, H.; Ameur, H.: Investigation of the mixed convection of power-law fluids between two horizontal concentric cylinders: Effect of various operating conditions. Thermal Sci Eng Progr 20, 100731 (2020). https://doi.org/10.1016/j.tsep.2020.100731

    Article  Google Scholar 

  34. Laidoudi H., Ameur H.. (2021), Investigation of the natural convection within a cold circular enclosure containing three equal-sized cylinders of hot surface. Defect Diffus Forum, 409: 49–57.https://doi.org/10.4028/www.scientific.net/DDF.409.49

  35. Hussain, S.H.; Hussein, A.K.: Mixed convection heat transfer in a differentially heated square enclosure with a conductive rotating circular cylinder at different vertical locations. Int Commun Heat Mass Transfer 38, 263–274 (2011)

    Article  Google Scholar 

  36. Acharya, N.: On the flow patterns and thermal control of radiative natural convective hybrid nanofluid flow inside a square enclosure having various shaped multiple heated obstacles. Eur Phys J Plus 136, 889 (2021). https://doi.org/10.1140/epjp/s13360-021-01892-0

    Article  Google Scholar 

  37. Laidoudi, H.; Makinde, O.D.: Computational study of thermal buoyancy from two confined cylinders within a square enclosure wifth single inlet and outlet ports. Heat Transfer 50, 1335–1350 (2021). https://doi.org/10.1002/htj.21932

    Article  Google Scholar 

  38. Mallikarjuna, B.R.; Rashid, A.M.; Hussein, A.K.; Raju, S.H.: Transpiration and thermophoresis effects on non-Darcy convective flow past a rotating cone with thermal radiation. Arab. J. Sci. Eng. 41(4691), 4700 (2016). https://doi.org/10.1007/s13369-016-2252-x

    Article  MathSciNet  MATH  Google Scholar 

  39. Ameur, H.: 3D hydrodynamics involving multiple eccentric impellers in unbaffled cylindrical tank. Chin. J. Chem. Eng. 24, 572–580 (2016). https://doi.org/10.1016/j.cjche.2015.12.010

    Article  Google Scholar 

  40. Ameur, H.: Effect of some parameters on the performance of anchor impellers for stirring shear-thinning fluids in a cylindrical vessel. J. Hydrodyn. 28, 669–675 (2016). https://doi.org/10.1016/S1001-6058(16)60671-6

    Article  Google Scholar 

  41. Ameur, H.: Mixing of complex fluids with flat and pitched bladed impellers: effect of blade attack angle and shear-thinning behavior. Food Bioprod. Process. 99, 71–77 (2016). https://doi.org/10.1016/j.fbp.2016.04.004

    Article  Google Scholar 

  42. Ameur, H.: Mixing of shear thinning fluids in cylindrical tanks: effect of the impeller blade design and operating conditions. Int. J. Chem. Reactor Eng. 14, 1025–1034 (2016). https://doi.org/10.1515/ijcre-2015-0200

    Article  Google Scholar 

  43. Ameur, H.: Effect of the shaft eccentricity and rotational direction on the mixing characteristics in cylindrical tank reactors. Chin. J. Chem. Eng. 24, 1647–1654 (2016). https://doi.org/10.1016/j.cjche.2016.05.011

    Article  Google Scholar 

  44. Ameur, H.: Mixing of a viscoplastic fluid in cylindrical vessels equipped with paddle impellers. ChemistrySelect 2, 11492–11496 (2017). https://doi.org/10.1002/slct.201702459

    Article  Google Scholar 

  45. Ameur, H.: Data on the flow of shear thinning fluids in a rotating cylinder device. Data Brief 25, 104084 (2019). https://doi.org/10.1016/j.dib.2019.104084

    Article  Google Scholar 

  46. Ameur, H.: Effect of the baffle inclination on the flow and thermal fields in channel heat exchangers. Result Eng 3, 100021 (2019). https://doi.org/10.1016/j.rineng.2019.100021

    Article  Google Scholar 

  47. Ameur, H.: Some modifications in the Scaba 6SRGT impeller to enhance the mixing characteristics of Hershel-Bulkley fluids. Food Bioprod. Process. 117, 302–309 (2019). https://doi.org/10.1016/j.fbp.2019.08.007

    Article  Google Scholar 

  48. Ameur, H.: Effect of corrugated baffles on the flow and thermal fields in a channel heat exchanger. J Appl Computat Mech 6, 209–218 (2020)

    Google Scholar 

  49. Ameur, H.; Vial, C.: Modified Scaba 6SRGT impellers for process intensification: cavern size and energy saving when stirring viscoplastic fluids. Chem Eng Process - Process Intensif 148, 107795 (2020). https://doi.org/10.1016/j.cep.2019.107795

    Article  Google Scholar 

  50. Ameur, H.: Newly modified curved-bladed impellers for process intensification: energy saving in the agitation of Hershel-Bulkley fluids. Chem Eng Process - Process Intensif 154, 108009 (2020). https://doi.org/10.1016/j.cep.2020.108009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Houari Ameur or S. Hoseinzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laidoudi, H., Ameur, H., Sahebi, S.A.R. et al. Thermal Analysis of Steady Simulation of Free Convection from Concentric Elliptical Annuli of a Horizontal Arrangement. Arab J Sci Eng 47, 15647–15660 (2022). https://doi.org/10.1007/s13369-022-06717-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06717-5

Keywords

Navigation