Skip to main content
Log in

Spinel Mixed Oxides Prepared by Soft Chemistry Methods for Catalytic Hydrogenation of 2-Nitrophenol to 2-Aminophenol

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Mixed oxides of Ni0.65Zn0.35Fe2O4 stoichiometry (Ni + Zn/Fe = 1:2) were prepared by citrate and coprecipitation methods, characterized by TGA-TD, XRD, FTIR and SEM, and its catalytic properties were investigated in hydrogenation of 2-nitrophenol (2-NP) to 2-aminophenol (2-AP) counterparts under ambient conditions. The methods of preparation influenced the textural, the structural and the reactivity properties. All the preparations show the presence of mixed phases containing spinel structure and γ-Fe2Ooxide. The crystallite sizes increase with increasing calcination temperatures due to the coalescence of nanoparticles by solid-state diffusion. All samples exhibited high catalytic activity with first-order kinetic; the sample issued from citrate method and annealed at 800 °C (Ea ~ 31.6 kJ/mol) is the most active system with a high X-ray density and a low force constant at tetrahedral sites. For this catalyst, 99.7% of 2-NP was reduced to 2-AP within 6.5 min and the recycled catalyst shows a very good activity for five catalytic runs. It could remain more than 88% activity after it was used five times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nguyen, A.T.; Nishijo, M.; Hori, E.; Nguyen, N.M.; Pham, T.T.; Fukunaga, K.; Nakagawa, H.; Tran, A.H.; Nishijo, H.: Influence of maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on socioemotional behaviors in offspring rats. Environ. Health Insights 7, 1–14 (2013)

    Article  Google Scholar 

  2. Dinari, M.; Dadkhah, F.: Swift reduction of 4-nitrophenol by easy recoverable magnetite-Ag/layered double hydroxide/starch bionanocomposite. Carbohydr. Polym. 228, 115392 (2020)

    Article  Google Scholar 

  3. Djediai, H.; Benrabaa, R.; Gombert, B.; N’Guettia, R.K.: Photocatalytic degradation of 5-Fluorouracil by diatomite-supported titanium dioxide under UV-A irradiation. ChemistrySelect 4, 11413–11416 (2019)

    Article  Google Scholar 

  4. Auriol, M.; Filali-Meknassi, Y.; Dayal Tyagi, R.: Présence et devenir des hormones stéroïdiennes dans les stations de traitement des eaux usées. Rev. Sci. Eau. 20, 89–108 (2007)

    Google Scholar 

  5. Zaviska, F.; Drogui, P.; Mercier, G.; Blais, J.F.: Procédés d’oxydation avancée dans le traitement des eaux et des effluents industriels : Application à la dégradation des polluants réfractaires. Rev. Sci. Eau. 22, 535–564 (2009)

    Google Scholar 

  6. Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Xu, Z.; Liu, M.: A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. J. Hazard. Mater. 201, 250–259 (2012)

    Article  Google Scholar 

  7. Shaoqing, Y.; Jun, H.; Jianlong, W.: Radiation-induced catalytic degradation of p-nitrophenol (PNP) in the presence of TiO2 nanoparticles. Radiat. Phys. Chem. 79, 1039–1046 (2010)

    Article  Google Scholar 

  8. Marais, E.; Nyokong, T.: Adsorption of 4-nitrophenol onto Amberlite IRA-900 modified with metallophthalocyanines. J. Hazard. Mater. 152, 293–301 (2008)

    Article  Google Scholar 

  9. Elfiad, A.; Galli, F.; Djadoun, A.; Sennour, M.; Chegrouche, S.; Meddour-Boukhobza, L.; Boffito, D.C.: Natural α-Fe2O3 as an efficient catalyst for the p-nitrophenol reduction. Mater. Sci. Eng. B. 229, 126–134 (2018)

    Article  Google Scholar 

  10. Pozun, Z.D.; Rodenbusch, S.E.; Keller, E.; Tran, K.; Tang, W.; Stevenson, K.J.; Henkelman, G.: A systematic investigation of p-Nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. J. Phys. Chem. C. 117, 7598–7604 (2013)

    Article  Google Scholar 

  11. Mandlimath, T.R.; Gopal, B.: Catalytic activity of first row transition metal oxides in the conversion of p-nitrophenol to p-aminophenol. J. Mol. Catal. A: Chem. 350, 9–15 (2011)

    Article  Google Scholar 

  12. She, Z.W.; Liu, S.H.; Zhang, S.Y.; Shah, K.W.; Han, M.Y.: Synthesis and multiple reuse of eccentric Au@TiO2 nanostructures as catalysts. Chem. Commun. 47, 6689–6691 (2011)

    Article  Google Scholar 

  13. Liu, Q.; Xu, Y.R.; Wang, A.J.; Feng, J.J.: One-step melamine-assisted synthesis of graphene-supported AuPt@Au nanocrystals for enhanced catalytic reduction of p-nitrophenol. RSC Adv. 5, 96028–96033 (2015)

    Article  Google Scholar 

  14. Chang, Y.C.; Chen, D.H.: Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J. Hazard. Mater. 165(15), 664–669 (2009)

    Article  Google Scholar 

  15. Jin, L.; He, G.; Xue, J.; Xu, T.; Chen, H.: Cu/graphene with high catalytic activity prepared by glucose blowing for reduction of p-nitrophenol. J. Cleaner Prod. 161, 655–662 (2017)

    Article  Google Scholar 

  16. Shui, L.; Zhang, G.; Hu, B.; Chen, X.; Jin, M.; Zhou, G.; Peng, B.: Photocatalytic one-step synthesis of Ag nanoparticles without reducing agent and their catalytic redox performance supported on carbon. J. Energy Chem. 36, 37–46 (2019)

    Article  Google Scholar 

  17. Rethwisch, D.G.; Dumesic, J.A.: The effects of metal-oxygen bond strength on properties of oxides: II—water-gas shift over bulk oxides. Appl Catal. 21, 97–109 (1986)

    Article  Google Scholar 

  18. Salhi, N.; Petit, C.; Roger, A.C.; Kiennemann, A.; Libs, S.; Bettahar, M.M.: Ni catalysts from NiAl2O4 spinel for CO2 reforming of methane. Catal Today. 113, 187–193 (2006)

    Article  Google Scholar 

  19. Wang, J.A.; Bokhimi, X.; Novaro, O.; Lopez, T.; Gomez, R.: Effects of the surface structure and experimental parameters on the isopropanol decomposition catalyzed with sol–gel MgO. J. Mol. Catal. A: Chem. 145, 291–300 (1999)

    Article  Google Scholar 

  20. Benrabaa, R.; Löfberg, A.; Rubbens, A.; Bordes-Richard, E.; Vannier, R.N.; Barama, A.: Structure, reactivity and catalytic properties of nanoparticles of nickel ferrite in the dry reforming of methane. Catal. Today. 203, 188–195 (2013)

    Article  Google Scholar 

  21. Salhi, N.; Boulahouache, A.; Petit, C.; Kiennemann, A.; Rabia, C.: Steam reforming of methane to syngas over NiAl2O4 spinel catalysts. Int. J. Hydrog. Energy 36, 11433–11439 (2011)

    Article  Google Scholar 

  22. Benrabaa, R.; Boukhlouf, H.; Bordes-Richard, E.; Vannier, R.N.; Barama, A.: Structural, textural and acid-base properties of nano-sized NiFe2O4 spinel catalysts. Catal. Lett. 142, 42–49 (2012)

    Article  Google Scholar 

  23. Benrabaa, R.; Löfberg, A.; Guerrero Caballero, J.; Bordes-Richard, E.; Rubbens, A.; Vannier, R.N.; Boukhlouf, H.; Barama, A.: Sol-gel synthesis and characterization of silica supported nickel ferrite catalysts for dry reforming of methane. Catal. Commun. 58, 127–131 (2015)

    Article  Google Scholar 

  24. Sreekumar, S.; Sugunan, S.: Ferrospinels based on Co and Ni prepared via a low temperature route as efficient catalysts for the selective synthesis of o-cresol and 2,6-xylenol from phenol and methanol. Mol. Catal. A Chem. 185, 259–268 (2002)

    Article  Google Scholar 

  25. Chen, D.H.; He, X.R.: Synthesis of nickel ferrite nanoparticles by sol-gel method. Mater. Res. Bull. 36, 1369–1377 (2001)

    Article  Google Scholar 

  26. Mirosław, M.B.; Krzysztof, H.: Hydrothermal synthesis of nickel ferrite powders, their properties and sintering. J. Eur. Ceram. Soc. 27, 723–727 (2007)

    Article  Google Scholar 

  27. Prasad, S.; Gajbhiye, N.S.: Magnetic studies of nanosized nickel ferrite particles synthesized by the citrate precursor technique. J. Alloys Compd. 265, 87–92 (1998)

    Article  Google Scholar 

  28. Bhosale, A.G.; Chougule, B.K.: X-ray, infrared and magnetic studies of Al-substituted Ni ferrites. Mater. Chem. Phys. 97, 273–276 (2006)

    Article  Google Scholar 

  29. Seyyed Ebrahimi, S.A.; Azadmanjiri, J.: Evaluation, of NiFe2O4 ferrite nanocrystalline powder synthesized by a sol–gel auto-combustion method. J. Non-Cryst. Solids. 353, 802–804 (2007)

    Article  Google Scholar 

  30. Gul, I.H.; Ahmed, W.; Maqsood, A.: Electrical and magnetic characterization of nanocrystalline Ni-Zn ferrite synthesis by co-precipitation route. J. Magn. Mater. 320, 270–275 (2008)

    Article  Google Scholar 

  31. Rouessac, F.; Rouessac. A.: Analyse chimique, Méthodes et techniques instrumentales modernes, 6ème edition, Dunod (2004).

  32. Choi, K.S.; Yeon, J.W.; Park, Y.S.; Ha, Y.K.; Han, S.H.; Song, K.: Investigation of nickel ferrite formation in a binary Fe(III)–Ni(II) hydroxide precipitate containing H2O with or without Li2O doping. J. Alloys Compd. 486, 824–829 (2009)

    Article  Google Scholar 

  33. Benrabaa, R.; Boukhlouf, H.; Löfberg, A.; Rubbens, A.; Vannier, R.N.; Bordes-Richard, E.; Barama, A.: Nickel ferrite spinel as catalyst precursor in the dry reforming of methane: synthesis, characterization and catalytic properties. J. Nat. Gas Chem. 21, 595–604 (2012)

    Article  Google Scholar 

  34. Rabi, B.; Essoumhi, A.; Sajieddine, M.; Greneche, J.M.; Hlil, E.K.; Razouk, A.; Valente, M.A.: Structural, magnetic and magnetocaloric study of Ni0.5Zn0.5Fe2O4 spinel. Appl. Phys. A Mater. Sci. Process. 126, 174 (2020)

    Article  Google Scholar 

  35. Albuquerque, A.S.; Ardison, J.D.; Macedo, W.A.A.; Alves, M.C.M.: Nanosized powders of NiZn ferrite: synthesis, structure, and magnetism. J. Appl. Phys. 87, 4352 (2000)

    Article  Google Scholar 

  36. Mouallem-Bahout, M.; Bertrand, S.; Pena, O.: Synthesis and characterization of Zn1_xNixFe2O4 spinels prepared by a citrate precursor. J. Solid State Chem. 178, 1080–1086 (2005)

    Article  Google Scholar 

  37. Pavarini E.: Crystal-Field Theory, Tight-Binding Method and Jahn-Teller Effect. Modeling and Simulation 2, Forschungszentrum Jülich (2012)

  38. Huang, J.; Vongehr, S.; Tang, S.; Lu, H.; Meng, X.: Highly catalytic Pd-Ag bimetallic dendrites. J. Phys. Chem. C. 114, 15005–15010 (2010)

    Article  Google Scholar 

  39. Pradhan, N.; Pal, A.; Pal, T.: Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf A 196(2–3), 247–257 (2002)

    Article  Google Scholar 

  40. Baruah, B.; Gabriel, G.J.; Akbashev, M.J.; Booher, M.E.: Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction. Langmuir 29, 4225–4234 (2013)

    Article  Google Scholar 

  41. Xu, B.; Li, X.; Chen, Z.; Zhang, T.; Cuncheng, L.: Pd@MIL-100(Fe) composite nanoparticles as efficient catalyst for reduction of 2/3/4-nitrophenol: synergistic effect between Pd and MIL-100(Fe). Microporous Mesoporous Mater. 255, 1–6 (2018)

    Article  Google Scholar 

  42. Alonso, J.A.; Martinez-Lope, M.J.; Falcon, H.; Carbonio, R.E.: On the correlation of Ni oxidation states and electronic conductivity of (R, A)NiO3-δ (R=lanthanides, A=alkaline earths, Th) perovskites with catalytic activity for H2O2 decomposition. Phys. Chem. Chem. Phys. 12, 3025–3030 (1999)

    Article  Google Scholar 

  43. Espenson, H.J.: Chemical Kinetics and Reaction Mechanisms, 2nd edn. McGraw-Hill Science Engineering (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laâldja Meddour-Boukhobza.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1943 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matassi, S., Benrabaa, R., Benturki, O. et al. Spinel Mixed Oxides Prepared by Soft Chemistry Methods for Catalytic Hydrogenation of 2-Nitrophenol to 2-Aminophenol. Arab J Sci Eng 47, 7171–7181 (2022). https://doi.org/10.1007/s13369-022-06714-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06714-8

Keywords

Navigation