Skip to main content
Log in

Exergy and SCAPS 1-D Analysis on Modified Thermophotovoltaic Cell with Fresnel Lens Concentrator and Absorber–Emitter Materials

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the exergy and SCAPS 1-D analysis of the modified thermophotovoltaic (TPV) system were carried out using an augmented absorber–emitter configuration of Gold (Au), Chromium (Cr), Graphene Layers as absorbers with Si3N4 as the emitter. The aspect ratio for the absorber–emitter was considered as 10 and the concentrator used in the system was a Fresnel lens with a thickness of 1.5 mm. The PV cell used in the system was composed of silicon with a power output of 221 W at the maximum solar irradiance of 715 W/m2. The maximum first law efficiency of the system was determined and found out to be 30.86%. The exergy efficiency throughout the day for the whole system was observed to be 23% for the modified TPV system with the absorber–emitter materials. Using SCAPS 1-D modeling software the solar panel was simulated and the open-circuit voltage, current density and fill factor was calculated. The observation is that the solar photovoltaic system with Au/Cr/Graphene layers as absorber materials and Si3N4 emitter with Fresnel lens concentrator configuration reaches higher performance and enhances the maximum power output by 8–9% compared to conventional solar PV systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

Area (m2)

C :

Specific heat capacity (J/kg.K)

CE:

Conversion efficiency (%)

E :

Exergy (J)

FF:

Fill factor (%)

I :

Solar irradiance (W/m2)

J :

Current density (mA/cm2)

J sc :

Short circuit current density (mA/cm2)

m :

Mass (kg)

p :

Pressure (Pascal)

P :

Power (W)

Q :

Heat transfer in the component (J)

t :

Thickness (nm)

T :

Temperature (K)

V oc :

Open-circuit voltage (V)

Au:

Gold

AM:

Air mass

Cr:

Chromium

TPV:

Thermophotovoltaic

SCAPS:

Solar cell capacitance simulator

Si3N4 :

Silicon nitride

a :

Absorber

c :

Concentrator

e :

Emitter

n :

Si-n layer

p :

Si-p layer

s :

Solar cell

0:

Atmospheric condition

el:

Electrical

th:

Thermal

η :

Efficiency of the system

ξ :

Overall exergy efficiency of the TPV system

References

  1. Utlu, Z.; Ona, B.S.: Thermodynamic analysis of thermophotovoltaic systems used in waste heat recovery systems: an application. Int. J. Low Carbon Technol. 13(1), 52–60 (2018)

    Article  Google Scholar 

  2. Andreev, V.M.; Grilikhes, V.A.; Khvostikov, V.P.; Khvostikova, O.A.; Rumyantsev, V.D.; Sadchikov, N.A.; Shvarts, M.Z.: Concentrator PV modules and solar cells for TPV systems. Sol. Energy Mater. Sol. Cells. (2004). https://doi.org/10.1016/j.solmat.2004.02.037

    Article  Google Scholar 

  3. Khan, S.Y.; Waqas, A.; Ahmad, N.; Mahmood, M.; Shahzad, N.; Sajid, M.B.: Thermal management of solar PV module by using hollow rectangular aluminum fin. J. Renew. Sustain. Energy 12, 063501 (2020). https://doi.org/10.1063/5.0020129

    Article  Google Scholar 

  4. Dong, Q.; Liao, T.; Yang, Z.; Chen, X.; Chen, J.: Performance characteristics and parametric choices of a solar thermophotovoltaic cell at the maximum efficiency. Energy Convers. Manag. 136, 44–49 (2017)

    Article  Google Scholar 

  5. Burger, T.; Sempere, C.; Roy-Layinde, B.; Lenert, A.: Present efficiencies and future opportunities in thermophotovoltaics. Joule 4(8), 1660–1680 (2020)

    Article  Google Scholar 

  6. Agarwal, S.; Prajapati, Y.K.: Analysis of metamaterial-based absorber for thermo-photovoltaic cell applications. IET Optoelectron. 11(5), 208–212 (2017)

    Article  Google Scholar 

  7. Karami-Lakeh, H.; Hosseini-Abardeh, R.; Kaatuzian, H.: Numerical and experimental investigation on a thermo-photovoltaic module for higher efficiency energy generation. Int. J. Thermophys. 38(5), 78 (2017)

    Article  Google Scholar 

  8. Xie, M.; Zhang, S.; Cai, B.; Gu, Y.; Liu, X.; Kan, E.; Zeng, H.: Van der Waals bilayer antimonene: a promising thermophotovoltaic cell material with 31% energy conversion efficiency. Nano Energy 38, 561–568 (2017)

    Article  Google Scholar 

  9. Bendelala, F.; Cheknane, A.; Hilal, H.: Enhanced low-gap thermophotovoltaic cell efficiency for a wide temperature range based on a selective meta-material emitter. Sol. Energy 174, 1053–1057 (2018)

    Article  Google Scholar 

  10. Utlu, Z.; Tolon, M.; Karabuga, A.: Modelling of energy and exergy analysis of ORC integrated systems in terms of sustainability by applying artificial neural network. Int. J. Low-Carbon Technol. (2020). https://doi.org/10.1093/ijlct/ctaa033

    Article  Google Scholar 

  11. Zenker, M.; Heinzel, A.; Stollwerck, G.; Ferber, J.; Luther, J.: Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells. IEEE Trans. Electron Devices 48(2), 367–376 (2001)

    Article  Google Scholar 

  12. Nadimi, E.; Jafarmadar, S.: The numerical study of the energy and exergy efficiencies of the micro-combustor by the internal micro-fin for thermophotovoltaic systems. J. Clean. Prod. 235, 394–403 (2019)

    Article  Google Scholar 

  13. Virol Badescu, V.: Thermodynamic theory of thermophotovoltaic solar energy conversion. J. Appl. Phys. 90(12), 6476–6486 (2001)

    Article  Google Scholar 

  14. Sun, X.; Silverman, T.J.; Zhou, Z.; Khan, M.R.; Bermel, P.; Alam, M.A.: Optics-based approach to thermal management of photovoltaics: selective-spectral and radiative cooling. IEEE J. Photovolt 7(2), 566–574 (2017)

    Article  Google Scholar 

  15. Fabbri, G.; Greppi, M.: An optimized heat sink for thermophotovoltaic panels. Int. J. Appl. Ind. Eng. 5(1), 1–9 (2018)

    Google Scholar 

  16. Cordero, N., Ginige, R., Corbett, B., Kennedy, K.: Thermal modelling of TPV systems. In Int. Therm 2002. Eighth intersociety conference on thermal and thermomechanical phenomena in electronic systems (Cat. No. 02CH37258) (pp. 605–609). IEEE (May 2002)

  17. Sulima, O.V.; Bett, A.W.: Fabrication and simulation of GaSb thermophotovoltaic cells. Sol. Energy Mater. Sol. Cells 66(1–4), 533–540 (2001)

    Article  Google Scholar 

  18. Ollier, E.; Dunoyer, N.; Szambolics, H.; Lorin, G.: Nanostructured thin films for solar selective absorbers and infrared selective emitters. Sol. Energy Mater. Sol. Cells 170, 205–210 (2017)

    Article  Google Scholar 

  19. Bermel, P.; Ghebrebrhan, M.; Chan, W.; Yeng, Y.X.; Araghchini, M.; Hamam, R.; Marton, C.H.; Jensen, K.F.; Solja, M.; Joannopoulos, J.D.; Johnson, S.G.; Celanovic, I.: Design and global optimization of high-efficiency thermophotovoltaic systems. Opt. Express 18(103), A314–A334 (2010)

    Article  Google Scholar 

  20. Bhatt, R.; Kravchenko, I.; Gupta, M.: High-efficiency solar thermophotovoltaic system using a nanostructure-based selective emitter. Sol. Energy 197, 538–545 (2020)

    Article  Google Scholar 

  21. Agarwal, S.; Prajapati, Y.K.: Design of broadband absorber using 2-D materials for thermo-photovoltaic cell application. Opt. Commun. 413, 39–43 (2018)

    Article  Google Scholar 

  22. Leutz, R.; Suzuki, A.: Nonimaging fresnel lenses, design and performance of solar concentrators. Springer Series in Optical Sciences, Springer, Berlin (2001)

    Book  Google Scholar 

  23. Sato, N.: Chemical energy and exergy: an introduction to chemical thermodynamics for engineers. Elsevier (2004)

    Google Scholar 

  24. Dhivagar, R.; Sundararaj, S.: Thermodynamic and water analysis on augmentation of a solar still with copper tube heat exchanger in coarse aggregate. J. Therm. Anal. Calorim. 136(1), 89–99 (2019)

    Article  Google Scholar 

  25. Farzanehnia, A.; Sardarabadi, M.: Exergy its application—toward green energy production and sustainable environment. In: Aziz, M. (Ed.) Exergy in photovoltaic/thermal nanofluid-based collector systems. London, IntechOpen (2019)

    Chapter  Google Scholar 

  26. Kallio, S.; Siroux, M.: Energy analysis and exergy optimization of photovoltaic-thermal collector. Energies 13, 5106 (2020). https://doi.org/10.3390/en13195106

    Article  Google Scholar 

  27. Bauer, T.: Thermophotovoltaics: basic principles and critical aspects of system design. Springer, Berlin (2011)

    Book  Google Scholar 

  28. Honsberg, C.B.; Corkish, R., Bremner, S. P.: A new generalized detailed balance formulation to calculate solar cell efficiency limits. In: 17th European photovoltaic solar energy conference. pp. 22–26, (2001)

  29. Ramli, N. F.; Sepeai, S.; Rostan, N. F. M.; Ludin, N. A.; Ibrahim, M. A.; Teridi, M. A. M.; Zaidi, S. H.: Model development of monolithic tandem silicon-perovskite solar cell by SCAPS simulation. In: AIP conference proceedings (Vol. 1838, No. 1, p. 020006). (2017)

  30. Sharma, D.K.; Purohit, G.: Fill factor based maximum power point tracking (MPPT) for standalone solar PV system. In: the 6th world conference on photovoltaic energy conversion, 8WePo.9.18, (WCPEC-6) At: Kyoto, Japan, (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sundararaj.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindan, P., Sundararaj, S., Karthikeyan, C. et al. Exergy and SCAPS 1-D Analysis on Modified Thermophotovoltaic Cell with Fresnel Lens Concentrator and Absorber–Emitter Materials. Arab J Sci Eng 47, 15673–15687 (2022). https://doi.org/10.1007/s13369-022-06712-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06712-w

Keywords

Navigation