Skip to main content
Log in

Prescribed Temperature Profiles of Longitudinal Convective-Radiative Fins Subject to Axially Distributed Thermal Conductivities

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Design of an optimal extended surface having functionally graded material is significant in cooling performance of hot attached structures in technological applications. The present endeavor is to search for axially variable thermal conductivity formula for a prescribed longitudinal fin shape of rectangular or triangular cross section. Heat transfer is presumed to take place through conductive, convective and radiative effects. The well-known fact is that it is not possible to solve in closed-form the highly nonlinear heat transfer equation under such considerations in general, unless some effects are ignored. Temperature or spatial dependence of material properties of the fin make the problem even harder to treat without numerical simulations. To help designer to avoid such simulations, prescribed temperature distributions in the form of elementary polynomial functions involving some shape parameters are utilized. Under operative geometric and thermal parameters such as the Biot number and the radiation parameter, exact solution formulae for the pertinent thermal conductivity distribution along the functionally graded extended surface are then obtained. The price to pay is only to work out the domain of definition of physical parameters acting on the loaded temperature profile.Designer can benefit from the advantage of the presented elementary solutions while analyzing the efficiency of convecting-radiating longitudinal fins of rectangular, triangular or a more general tapered longitudinal fin class cross sections and control/adjust the physical parameters to the desired temperature/material conditions. With a preloaded temperature profile to the energy equation, the tip temperature can be adjusted so as to enhance the heat transfer rate by increasing/decreasing the governing fin parameters. Such promising inverse problem of extracting axial thermal conductivity distribution from a prescribed temperature solution can also be utilized in other kinds of fin profiles without resorting to the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Deepa, D.; Thanigaivelan, R.; Venkateshwaran, M.: Identifying a suitable micro-fin material for natural convective heat transfer using multi-criteria decision analysis methods. Mater. Today: Proc. Mater. Today: Proc. 45, 1655–1659 (2021)

    Article  Google Scholar 

  2. Huang, C.-H.; Tung, P.-W.: Numerical and experimental studies on an optimum Fin design problem to determine the deformed wavy-shaped heat sinks. Int. J. Thermal Sci. 151, 106282 (2020)

    Article  Google Scholar 

  3. Abraham, J.D.; Dhoble, A.S.; Mangrulkar, C.K.: Numerical analysis for thermo-hydraulic performance of staggered cross flow tube bank with longitudinal tapered fins. Int. Commun. Heat Mass Transf. 118, 104905 (2020)

    Article  Google Scholar 

  4. Huang, C.-H.; Wang, G.-J.: A design problem to estimate the optimal fin shape of LED lighting heat sinks. Int. J. Heat Mass Transf. 106, 1205–1217 (2017)

    Article  Google Scholar 

  5. Huang, C.-H.; Chung, Y.-L.: An inverse problem in determining the optimum shapes for partially wet annular fins based on efficiency maximization. Int. J. Heat Mass Transf. 90, 364–375 (2015)

    Article  Google Scholar 

  6. Hajmohammadi, M.R.; Rasouli, E.; Elmi, M.A.: Geometric optimization of a highly conductive insert intruding an annular fin. Int. J. Heat Mass Transf. 146, 118910 (2020)

    Article  Google Scholar 

  7. Sarani, I.; Payan, S.; Payan, A.; Nada, S.A.: Enhancement of energy storage capability in RT82 phase change material using strips fins and metal-oxide based nanoparticles. J. Energy Storage 32, 102009 (2020)

    Article  Google Scholar 

  8. Oclon, P.; Łopata, S.; Stelmach, T.; Li, M.; Zhang, J.-F.; Mzad, H.; Tao, W.-Q.: Design optimization of a high-temperature fin-and-tube heat exchanger manifold-A case study. Energy 215, 119059 (2021)

    Article  Google Scholar 

  9. Mochizuki, H.: Modeling of an air cooler with finned heat transfer tube banks using the RELAP5-3D code. Nucl. Eng. Des. 370, 110902 (2020)

    Article  Google Scholar 

  10. Kraus, A.D.; Aziz, A.; Welty, J.: Extended surface heat transfer. Wiley, New York (2001)

    Google Scholar 

  11. Lienhard, J.H.; Lienhard, J.H.: A heat transfer textbook, 3rd edn Phlogiston Press, Cambridge (2011)

    MATH  Google Scholar 

  12. Mt Aznam, S.; Artisham, N.; Ghani, C.; Chowdhury, M.S.H.: A numerical solution for nonlinear heat transfer of fin problems using the Haar wavelet quasilinearization method. Results Phys. 14, 102393 (2019)

    Article  Google Scholar 

  13. Aderogba, A.A.; Fabelurin, O.O.; Akindeinde, S.O.; Adewumi, A.O.; Ogundare, B.S.: Nonstandard finite difference approximation for a generalized Fins problem. Math. Computers Simul. 178, 183–191 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, C.-N.; Li, X.-F.: Temperature distribution of conductive-convective-radiative fins with temperature-dependent thermal conductivity. Int. Commun. Heat Mass Transfer 117, 104799 (2020)

    Article  Google Scholar 

  15. Bochicchio, I.; Naso, M.G.; Vuk, E.; Zullo, F.: Convecting-radiating fins: explicit solutions, efficiency and optimization. Appl. Math. Modell. 89, 171–187 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hatami, M.; Ganji, D.D.: Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis. Int. J. Refrigeration 40, 149–154 (2014)

    Article  Google Scholar 

  17. Singla, R.K.; Das, R.: Application of decomposition method and inverse prediction of parameters in a moving fin. Energy Conv. Manage. 84, 268–281 (2014)

    Article  Google Scholar 

  18. Turkyilmazoglu, M.: Efficiency of heat and mass transfer in fully wet porous fins: Exponential fins versus straight fins. Int. J. Refrigeration 46, 158–164 (2014)

    Article  Google Scholar 

  19. Kundu, B.; Lee, K.S.: Exact analysis for minimum shape of porous fins under convection and radiation heat exchange with surrounding. Int. J. Heat Mass Transfer 81, 439–448 (2015)

    Article  Google Scholar 

  20. Mueller, D.W., Jr.; Abu-Mulaweh, H.I.: Prediction of the temperature in a fin cooled by natural convection and radiation. Appl. Therm. Eng. 26(14–15), 1662–1668 (2006)

    Article  Google Scholar 

  21. Dulkin, I.N.; Garasko, G.I.: Analysis of the 1-D heat conduction problem for a single fin with temperature dependent heat transfer coefficient: Part I -Extended inverse and direct solutions. Int. J. Heat Mass Transfer 51, 3309–3324 (2008)

    Article  Google Scholar 

  22. Khani, F.; Ahmadzadeh, M.; Raji, H.; Nejad, H.: Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient. Commun Nonlinear Sci. Numer. Simul. 14, 3327–3338 (2009)

    Article  MATH  Google Scholar 

  23. Moitsheki, R.J.; Hayat, T.; Malik, M.Y.: Some exact solutions of the fin problem with a power law temperature-dependent thermal conductivity. Nonlinear Anal.: Real World Appl. 11, 3287–3294 (2010)

  24. Kader, A.H.A.; Latif, M.S.A.; Nour, H.M.: General exact solution of the fin problem with variable thermal conductivity. Propul. Power Res. 5, 63–69 (2016)

    Article  MATH  Google Scholar 

  25. Huang, Y.; Li, X.-F.: Exact and approximate solutions of convective-radiative fins with temperature-dependent thermal conductivity using integral equation method. Int. J. Heat Mass Transfer 150, 119303 (2020)

  26. Kumar, S.; Kumar, S.D.: A numerical study of new fractional model for convective straight fin using fractional-order Legendre functions. Chaos, Solitons and Fractals 141, 110282 (2020)

    Article  MathSciNet  Google Scholar 

  27. Turkyilmazoglu, M.: A direct solution of temperature field and physical quantities for the nonlinear porous fin problem. Int. J. Numer. Methods Heat Fluid Flow 27, 516–529 (2017)

    Article  Google Scholar 

  28. Imani, G.: Three dimensional lattice Boltzmann simulation of steady and transient finned natural convection problems with evaluation of different forcing and conjugate heat transfer schemes. Computers Math. Appl. 74, 1362–1378 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mostafavi, A.; Parhizi, M.; Jain, A.: Semi-analytical thermal modeling of transverse and longitudinal fins in a cylindrical phase change energy storage system. Int. J. Thermal Sci. 153, 106352 (2020)

    Article  Google Scholar 

  30. Cao, Z.; Zhou, J.; Wei, J.; Sun, D.: Bo Yu, Direct numerical simulation of bubble dynamics and heat transfer during nucleate boiling on the micro-pin-finned surfaces. Int. J. Heat Mass Transfer 163, 120504 (2020)

    Article  Google Scholar 

  31. Shahabadi, M.; Mehryan, S.A.M.; Ghalambaz, M.; Ismael, M.: Controlling the natural convection of a non-Newtonian fluid using a flexible fin. Appl. Math. Modell. (2020). https://doi.org/10.1016/j.apm.2020.11.02

    Article  MATH  Google Scholar 

  32. Rezaee, M.; Taheri, A.A.; Jafari, M.: Experimental study of natural heat transfer enhancement in a rectangular finned surface by EHD method. Int. J. Heat Mass Transfer 119, 104969 (2020)

    Article  Google Scholar 

  33. Keramat, F.; Azari, Ahmad; Rahideha, H.; Abbasi, Mohsen: A CFD parametric analysis of natural convection in an H-shaped cavity with two-sided inclined porous fins. J. Taiwan Instit. Chem. Eng. 114, 142–152 (2020)

    Article  Google Scholar 

  34. Peng, B.; He, Z.; Wang, H.; Su, F.: Optimization of patterned-fins for enhancing charging performances of phase change materials-based thermal energy storage systems. Int. J. Heat Mass Transfer 164, 120573 (2021)

    Article  Google Scholar 

  35. Liang, C.; Rao, Y.: Numerical study of turbulent flow and heat transfer in channels with detached pin fin arrays under stationary and rotating conditions. Int. J. Thermal Sci. 160, 106659 (2021)

    Article  Google Scholar 

  36. Al-Khafaji, O.R.; Alabbas, A.H.: Computational fluid dynamics modeling study for the thermal performance of the pin fins under different parameters. IOP Conf. Ser.: Mater. Sci. Eng. 745, 012070 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Turkyilmazoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkyilmazoglu, M. Prescribed Temperature Profiles of Longitudinal Convective-Radiative Fins Subject to Axially Distributed Thermal Conductivities. Arab J Sci Eng 47, 15689–15703 (2022). https://doi.org/10.1007/s13369-022-06710-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06710-y

Keywords

Navigation