Skip to main content
Log in

Investigation of the Effect of MoO42− and Co2+ up on Electroless Ni–Mo–P and Ni–Co–P Alloys in Acidic Solution Using Tyrosine as Stabilizer: Characterization and Electrochemical Study

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The deposition rate, composition, morphology, and structure of electroless deposits Ni–Mo–P and Ni–Co–P plated at different concentrations of \({\text{MoO}}_{4}^{2 - }\) and \({\text{Co}}^{2 + }\) from acidic tyrosine baths were conducted in this study. Electrochemical study of electroless Ni–Co–P coating was investigated. The deposition rate and the composition of Ni–Mo–P and Ni–Co–P coatings were determined using gravimetric and EDX method which depends on the corresponding ions concentration in the plating bath. The \({\text{MoO}}_{4}^{2 - }\) ion played rather an inhibitor role of electroless Ni–Mo–P coating even at low concentration in the plating bath. SEM was used to analyze the morphology of electroless alloys, whereas XRD was used to investigate the structure evolution. The Ni–P, Ni–Mo–P and Ni–Co–P deposits were characterized by distinct morphology depending on P, Mo and Co content in the coatings, whereas, the structure of each alloy depended only on P and Co contents in Ni–Co–P coating. Either \({\text{MoO}}_{4}^{2 - }\) or \({\text{Co}}^{2 + }\) ions concentration had different effects on the deposition rate, the structure and the quality of electroless Ni–Mo–P and Ni–Co–P deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Huang, Y.; Mo, W.W.; Roan, M.L.; Huang, C.Y.; Mo, W.W.; Roan, M.L.: Studies on the influence of double-layer electroless metal deposition on the electromagnetic interference shielding effectiveness of carbon fiber/ABS composites. Surf. Coat Technol. 184(2–3), 163–169 (2004)

    Article  Google Scholar 

  2. Wojewoda-Budka, J.; Wierzbicka-Miernik, A.; Szczerba, M.; Kazimierczak, H.; Kwiecien, I.; Morgiel, J.; Stan-Glowinska, K.; Valenza, F.: The effect of Re addition on the thermal stability and structure of Ni-P electroless coatings. Mater Charact 171, 110811 (2021)

    Article  Google Scholar 

  3. Liu, L.; Peng, J.; Du, X.; Zheng, H.; Chen, Z.; Gong, P.; Xiao, Y.; Cao, X.: Synthesis, composition, morphology, and wettability of electroless Ni-Fe-P coatings with varying microstructures. Thin Solid Films 706, 138080 (2020)

    Article  Google Scholar 

  4. Pei, W.; Wang, X.; Liu, C.; Zhao, D.; Wu, C.; Wang, K.; Wang, Q.: Synthesis of hyperbranched Co-Ni-P nanocrystals and their splitting degree dependent HER performances. Electrochim. Acta 381, 138286 (2021)

    Article  Google Scholar 

  5. Abdel-Karim, R.; Halim, J.; El-Raghy, S.; Nabil, M.; Waheed, A.: Surface morphology and electrochemical characterization of electrodeposited Ni-Mo nanocomposites as cathodes for hydrogen evolution. J. Alloys Comp. 530, 85–90 (2012)

    Article  Google Scholar 

  6. Beltowska-Lehman, E.; Indyka, P.: Kinetics of Ni–Mo electrodeposition from Ni-rich citrate baths. Thin Solid Films 520(6), 2046–2051 (2012)

    Article  Google Scholar 

  7. Kriz, J.F.; Shimada, H.; Yoshimura, Y.; Matsubayashi, N.; Nishijima, A.: Nickel-containing catalysts for hydroprocessing of aromatic oils. Fuel 74(12), 1852–1857 (1995)

    Article  Google Scholar 

  8. Lu, G.; Zangari, G.: Study of the electroless deposition process of Ni-P-based ternary alloys. J. Electrochem. Soc. 150(11), C777 (2003)

    Article  Google Scholar 

  9. Zhao, G.; Wang, R.; Liu, S.; Wu, D.; Zhang, Y.; Wang, T.; Zou, Y.: Study on the role of element Mo in improving thermal stability and corrosion resistance of amorphous Ni-P deposit. J. Non-Cryst. Solids 549, 120358 (2020)

    Article  Google Scholar 

  10. Fetohi, A.E.; Hameed, R.M.A.; El-Khatib, K.M.: Ni–P and Ni–Mo–P modified aluminium alloy 6061 as bipolar plate material for proton exchange membrane fuel cells. J. Power Sources 240(58), 589–597 (2013)

    Article  Google Scholar 

  11. Chaitree, W.; Kalu, E.E.; Liang, Z.; Yeboah, Y.D.: Effects of bath composition and thermal treatment on the performance of Co-Ni–Mo–P electrocatalyst supported on carbon for the electrooxidation of ethanol. J. Alloys Comp. 860, 158404 (2021)

    Article  Google Scholar 

  12. Brenner, A.: Electrodeposition of Alloys, Vol. 1/2. Academic Press, New York (1963)

    Google Scholar 

  13. Kuznetsov, V.V.; Pavlov, M.R.; Kuznetsov, K.V.; Kudryavtsev, N.: Kinetics of cathodic processes of deposition of nickel–molybdenum alloys from an ammonia–citrate electrolyte. Russ. J. Electrochem. 39(12), 1338–1341 (2003)

    Article  Google Scholar 

  14. Sharma, A.; Bhatt, P.; Brajpuriya, R.; Tripathi, S.; Chaudhari, S.M.: Correlation study between structural, magnetic and transport properties of annealed Co thin films. Vacuum 78(1), 47–51 (2005)

    Article  Google Scholar 

  15. Kohmoto, O.; Yamamoto, T.: Hard magnetic properties of sputtered Co and Co-P films. J. Magn. Magn. Mater. 71(1), 33–38 (1987)

    Article  Google Scholar 

  16. Flanders, P.J.: Elastic stress-induced coercive field changes in Ni-Co-P films used in a rotating disk. IEEE Trans. Magn. 9(5), 1680–1682 (1983)

    Article  Google Scholar 

  17. Abdel Aal, A.; Shaaban, A.; Hamid, Z.; Abdel, Z.: Nanocrystalline soft ferromagnetic Ni–Co–P thin film on Al alloy by low temperature electroless deposition. Appl. Surf. Sci. 254(7), 1966–1971 (2008)

    Article  Google Scholar 

  18. Lee, C.Y.; Lin, K.L.: Study of Co-Cr films deposited by magnetron sputtering under different nitrogen partial pressures. Thin Solid Films 239(1), 93–98 (1994)

    Article  MathSciNet  Google Scholar 

  19. O’Sulivan, E.J.; Schrott, A.G.; Paunovic, M.; Sambucetti, C.J.; Marino, J.R.; Bailey, P.J.; Kaja, S.; Senkow, K.W.: Electrolessly deposited diffusion barriers for microelectronics. IBM J. Res. Dev. 42(5), 607–620 (1998)

    Article  Google Scholar 

  20. Liu, W.L.; Hsieh, S.H.; Chen, W.J.; Hsu, Y.C.: Growth behavior of electroless Ni–Co–P deposits on Fe. Appl. Surf. Sci. 255(6), 3880–3883 (2009)

    Article  Google Scholar 

  21. Parente, M.M.V.; Mattos, O.R.; Diaz, S.L.; Neto, P.L.; Miranda, F.J.: Electrochemical characterization of Ni–P and Ni–Co–P amorphous alloy deposits obtained by electrodeposition. J. Appl. Electrochem. 31(6), 677–683 (2001)

    Article  Google Scholar 

  22. Gao, Y.; Huang, L.; Zheng, Z.J.; Li, H.; Zhu, M.: The influence of cobalt on the corrosion resistance and electromagnetic shielding of electroless Ni–Co–P deposits on Al substrate. Appl. Surf. Sci. 253(24), 9470–9475 (2007)

    Article  Google Scholar 

  23. Aixiang, Z.; Weilao, X.; Jian, X.: Electroless Ni–Co–P coating of cenospheres using [Ag (NH3)2]+ activator. Mater. Lett. 9(4), 524–528 (2005)

    Article  Google Scholar 

  24. Li, Y.J.; Wang, R.; Qi, F.M.; Wang, C.M.: Preparation, characterization and microwave absorption properties of electroless Ni–Co–P-coated SiC powder. Appl. Surf. Sci. 254(15), 4708–4715 (2008)

    Article  Google Scholar 

  25. Pan, X.F.; Mu, G.H.; Shen, H.G.; Gu, M.Y.: Preparation and microwave absorption properties of electroless Co–Ni–P coated strontium ferrite powder. Appl. Surf. Sci. 253(9), 4119–4122 (2007)

    Article  Google Scholar 

  26. Podesta, J.J.; Piatti, R.C.V.; Arvia, A.J.; Ekdunge, P.; Juettner, K.; Kretsa, G.: The behaviour of Ni-Co-P base amorphous alloys for water electrolysis in strongly alkaline solutions prepared through electroless deposition. Int. J. Hydrogen Energy 17(1), 9–22 (1992)

    Article  Google Scholar 

  27. Podesta, J.J.; Piatti, R.C.V.; Arvia, A.J.: The influence of iridium, ruthenium and palladium on the electrochemical behaviour of Co-P and Ni-Co-P base amorphous alloys for water electrolysis in KOH aqueous solutions. Int. J. Hydrogen Energy 20(2), 111–122 (1995)

    Article  Google Scholar 

  28. Tunashima, S.; Maehata, Y.; Uchiyama, S.: Induced anisotropy and permeability in amorphous Fe-B and Co-Fe-B films. IEEE Trans. Magn. 17(6), 3073–3075 (1981)

    Article  Google Scholar 

  29. Hironaka, K.; Uedaira, S.: Soft magnetic properties of Co-Fe-P and Co-Fe-Sn-P amorphous films formed by electroplating. IEEE Trans. Magn. 26(5), 2421–2423 (1990)

    Article  Google Scholar 

  30. Riveiro, J.M.; Sanchez-Trujillo, M.C.: Magnetic anisotropy of electrodeposited Co-P amorphous alloys. IEEE Trans. Magn. 16(6), 1426–1428 (1980)

    Article  Google Scholar 

  31. Ohashi, K., Ito, M., Maruyama, T.: Magnetic materials, processes, and devices. In: Romankiw, L.T., Herman, D.A. , Jr. (eds.) PV 90–8, The Electrochem. Soc., Proc. Series, Pennington, NJ, 247 (1990)

  32. Yoshino, K.: Electrochemically deposited thin films. In: Paunovic, M., Ohno, I., Migoshi, Y. (eds.) PV 93–26, The Electrochem. Soc., Proc. Series, Pennington, NJ, 370 (1993)

  33. Schlesinger, M.: Electroless deposition of nickel. Mod. Electroplat. 4, 667–684 (2000)

    Google Scholar 

  34. Zou, G.Z.; Cao, M.S.; Zhang, L.; Li, J.G.; Xu, H.; Chen, Y.J.: A nanoscale core-shell of β-SiCP–Ni prepared by electroless plating at lower temperature. Surf Coat Technol 201(1–2), 108–112 (2006)

    Article  Google Scholar 

  35. Baskaran, I.; Kumar, R.S.; Sankara Narayanan, T.S.N.; Stephen, A.: Formation of electroless Ni–B coatings using low temperature bath and evaluation of their characteristic properties. Surf. Coat Technol. 200(24), 6888–6894 (2006)

    Article  Google Scholar 

  36. Matsuda, H.; Jones, G.A.; Takano, O.; Grundy, P.J.: Room-temperature electroless deposition of high-coercivity Co-Ni-P films. J. Magn. Magn. Mater. 120(1–3), 338–341 (1993)

    Article  Google Scholar 

  37. Mirzamaani, M.; Romankiw, L.; McGrath, C.; Karasinski, J.; Mahlke, J.; Anderson, N.C.: Correlation of structure and magnetic properties of thin CoP films. J. Electrochem. Soc. 135(11), 2813–2817 (1988)

    Article  Google Scholar 

  38. Schlesinger, M.; Meng, X.; Evans, W.T.; Saunders, D.A.; Kampert, W.P.: Micromorphology and magnetic studies of electroless cobalt/phosphorus thin films. J. Electrochem. Soc. 137(6), 1706–1709 (1990)

    Article  Google Scholar 

  39. Nicholson, E.L.; Khan, M.R.: Microstructure and magnetic properties of electroless plated Co-Ni-P and Co-P thin films for magnetic recording. J. Electrochem. Soc. 133(11), 2342–2345 (1986)

    Article  Google Scholar 

  40. Homma, T.; Sezai, Y.; Osaka, T.: A study on growth processes of CoNiP perpendicular magnetic anisotropy films electroless-deposited at room temperature. Electrochim. Acta 42(20–22), 3041–3047 (1997)

    Article  Google Scholar 

  41. Homma, T.; Sezai, Y.; Osaka, T.; Maeda, Y.; Donnet, D.M.: Compositional inhomogeneity in electroless-deposited CoNiP films studied by spin-echo 59Co nuclear magnetic resonance. J. Magn. Magn. Mater. 173(3), 314–320 (1997)

    Article  Google Scholar 

  42. Liu, W.L.; Chen, W.J.; Tsai, T.K.; Hsieh, S.H.; Chang, S.Y.: Effect of nickel on the initial growth behavior of electroless Ni–Co–P alloy on silicon substrate. Appl. Surf. Sci. 253(8), 3843–3848 (2007)

    Article  Google Scholar 

  43. Song, G.S.; Sun, S.; Wang, Z.C.; Luo, C.Z.; Pan, C.X.: Synthesis and characterization of electroless Ni–P/Ni–Mo–P duplex coating with different thickness combinations. Acta Metall. Sin 30(10), 1008–1016 (2017)

    Article  Google Scholar 

  44. Liu, D.L.; Yang, Z.G.; Zhang, C.: Electroless Ni–Mo–P diffusion barriers with Pd-activated self-assembled monolayer on SiO2. Mater. Sci. Eng. B. 166(1), 67–75 (2010)

    Article  Google Scholar 

  45. Agarwala, R.C.; Agarwala, V.: Electroless alloy/composite coatings: a review. Sadhana 28(3–4), 475–493 (2003)

    Article  Google Scholar 

  46. Chou, Y.H.; Sung, Y.; Bai, C.H.; Ger, M.D.: Effects of molybdate concentration on the characteristics of Ni–Mo–P diffusion barriers grown by nonisothermal electroless deposition. J. Electrochem. Soc. 155(9), D551 (2008)

    Article  Google Scholar 

  47. Kholmogorov, A.G.; Kononova, O.N.; Panchenko, O.N.: A review of the use of ion exchange for molybdenum recovery in Russia. Can. Metall. Q. 43(3), 297–304 (2004)

    Article  Google Scholar 

  48. Breslin, C.; Treacy, G.; Carroll, W.: Studies on the passivation of aluminium in chromate and molybdate solutions. Corros. Sci. 36(7), 1143–1154 (1994)

    Article  Google Scholar 

  49. Lu, G.; Zangari, G.: Corrosion resistance of ternary Ni-P based alloys in sulfuric acid solutions. Electrochim. Acta. 47(18), 2969–2979 (2002)

    Article  Google Scholar 

  50. Yoshino, M.; Masuda, T.; Yokoshima, T.; Sasano, J.; Shacham-Diamand, Y.; Mat-suda, I.; Osaka, T.; Hagiwara, Y.; Sato, I.: Electroless diffusion barrier process using SAM on low-k dielectrics. J. Electrochem. Soc. 154(3), D122 (2007)

    Article  Google Scholar 

  51. Zhong, S.; Yang, Z.H.; Cai, J.; He, H.J.; Wen, J.S.; Liu, C.: Electroless Cu deposition on a TiN barrier in CuSO4-HF solution. J. Electrochem. Soc. 152(7), C466 (2005)

    Article  Google Scholar 

  52. Larhzil, H.; Cissé, M.; Touir, R.; Ebn Touhami, M.; Cherkaoui, M.: Electrochemical and SEM investigations of the influence of gluconate on the electroless deposition of Ni–Cu–P alloys. Electrochim. Acta. 53(2), 622–628 (2007)

    Article  Google Scholar 

  53. Sudagar, J.; Lian, J.; Sha, W.: Electroless nickel, alloy, composite and nano coatings—A critical review. J. Alloys Compd. 571, 183–204 (2013)

    Article  Google Scholar 

  54. Podlaha, E.J.; Landolt, D.: Induced codeposition: I. An experimental investigation of Ni-Mo alloys. J. Electrochem. Soc. 143(3), 885–892 (1996)

    Article  Google Scholar 

  55. Chassaing, E.; Portail, N.; Levy, A.F.; Wang, G.: Characterisation of electrodeposited nanocrystalline Ni–Mo alloys. J. Appl. Electrochem. 34(11), 1085–1091 (2004)

    Article  Google Scholar 

  56. Stepanova, L.I.; Purovskaja, O.G.; Azarko, V.N.; Sviridov, V.V.: Peculiarities of Ni-Mo alloys electrodeposition from citrate electrolytes. Proc. Acad. Sci. Belarus Ser. Chem. Sci. 1, 38–43 (1997)

    Google Scholar 

  57. Stepanova, L.I.; Purovskaja, O.G.; Sviridov, V.V.: Influence of ammonium ions on chemical and phase composition of Ni-Mo alloy films electrodeposited from citrate electrolytes. Russ. J. Appl. Chem. 73(1), 66–70 (2000)

    Google Scholar 

  58. Beltowska-Lehman, E.; Bigos, A.; Indyka, P.; Kot, M.: Electrodeposition and characterisation of nanocrystalline Ni–Mo coatings. Surf. Coat. Technol. 211, 67–71 (2012)

    Article  Google Scholar 

  59. Sanches, L.S.; Domingues, S.H.; Marino, C.E.B.; Mascaro, L.H.: Characterisation of electrochemically deposited Ni–Mo alloy coatings. Electrochem. Commun. 6(6), 543–548 (2004)

    Article  Google Scholar 

  60. Matsubara, H.; Yamada, A.: Control of magnetic properties of chemically deposited cobalt nickel phosphorus films by electrolysis. J. Electrochem. Soc. 141(9), 2386–2390 (1994)

    Article  Google Scholar 

  61. Kim, D.H.; Aoki, K.; Takano, O.: Soft magnetic films by electroless Ni-Co-P plating. J. Electrochem. Soc. 142(11), 3763–3767 (1995)

    Article  Google Scholar 

  62. Wang, S.L.: Electroless deposition of Ni–Co–B alloy films and influence of heat treatment on the structure and the magnetic performances of the film. Thin Solid Films 515(23), 8419–8423 (2007)

    Article  Google Scholar 

  63. Huang, Y.; Shi, K.; Liao, Z.J.: Studies of electroless Ni–Co–P ternary alloy on glass fibers. Mater. Lett. 61(8–9), 1742–1746 (2007)

    Article  Google Scholar 

  64. Pang, J.; Li, Q.; Wang, W.; Xu, X.; Zhai, J.: Preparation and characterization of electroless Ni–Co–P ternary alloy on fly ash cenospheres. Surf. Coat. Technol. 205(17–18), 4237–4242 (2011)

    Article  Google Scholar 

  65. Bangwei, Z.; Bin, C.; Ge, Y.; Lingling, W.: Study of electroless Co-P alloys process. Electroplat. Pollut. Control. 17(6), 19–21 (1997)

    Google Scholar 

  66. Chang, Y.H.; Lin, C.C.; Hungang, M.P.; Chin, T.S.: The microstructure and magnetic properties of electroless-plated Co-B thin films. J. Electrochem. Soc. 133(5), 985–988 (1986)

    Article  Google Scholar 

  67. Grujicic, D.; Pesic, B.: Electrochemical and AFM study of cobalt nucleation mechanisms on glassy carbon from ammonium sulfate solutions. Electrochim. Acta 49(26), 4719–4732 (2004)

    Article  Google Scholar 

  68. Floate, S.; Hyde, M.; Compton, R.G.: Electrochemical and AFM studies of the electrodeposition of cobalt on glassy carbon: an analysis of the effect of ultrasound. J. Electroanal. Chem. 523(1–2), 49–63 (2002)

    Article  Google Scholar 

  69. Gomez, E.; Marin, M.; Sanz, F.; Valles, E.: Nano-and micrometric approaches to cobalt electrodeposition on carbon substrates. J. Electroanal. Chem. 422(1–2), 139–147 (1997)

    Article  Google Scholar 

  70. Myung, N., Ryu, K.H., Sumodjo, P.T.A., Nobe, K.: Fundamental aspects of electrochemical deposition and dissolution including modeling. In: Paunovic, M., Datta, M., Matlosc, M., Osaka, T., Talbot, J.B. (eds.) PV 97–27, Electrochem Soc Proc 136 (1993)

  71. Cui, C.Q.; Jiang, S.P.; Tseung, A.C.C.: Electrodeposition of cobalt from aqueous chloride solutions. J. Electrochem. Soc. 137(11), 3418–3423 (1990)

    Article  Google Scholar 

  72. Soto, A.B.; Arce, E.M.; Palomar-Pardave, M.; Gonzales, I.: Electrochemical nucleation of cobalt onto glassy carbon electrode from ammonium chloride solutions. Electrochim. Acta. 41(16), 2647–2655 (1996)

    Article  Google Scholar 

  73. Palomar-Pardave, M.; Gonzales, I.; Soto, A.B.; Arce, E.M.: Influence of the coordination sphere on the mechanism of cobalt nucleation onto glassy carbon. J. Electroanal. Chem. 443(1), 125–136 (1998)

    Article  Google Scholar 

  74. Mendoza-Huizar, L.H.; Robles, J.; Palomar-Pardave, M.: Nucleation and growth of cobalt onto different substrates: Part I. Underpotential deposition onto a gold electrode. J. Electroanal. Chem. 521(1–2), 95–106 (2002)

    Article  Google Scholar 

  75. Daly, B.P.; Barry, F.J.: Electrochemical nickel–phosphorus alloy formation. Int. Mater. Rev. 48(5), 326–338 (2003)

    Article  Google Scholar 

  76. Lu, K.: Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure and properties. Mater. Sci. Eng. 16(4), 161–221 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. EL Haloui or A. Zarrouk.

Ethics declarations

Conflict of interest

All Authors declare that there is no any conflict of interest in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EL Haloui, A., Driouch, M., EL Assiri, E.H. et al. Investigation of the Effect of MoO42− and Co2+ up on Electroless Ni–Mo–P and Ni–Co–P Alloys in Acidic Solution Using Tyrosine as Stabilizer: Characterization and Electrochemical Study. Arab J Sci Eng 47, 7157–7169 (2022). https://doi.org/10.1007/s13369-022-06703-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06703-x

Keywords

Navigation