Skip to main content

Advertisement

Log in

A Data-Driven Deterministic Forecast-Based Probabilistic Method for Uncertainty Estimation of Wind Power Generation

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The global priority in the production of clean and sustainable energy necessitates a reliable method of generation forecasts. However, the stochastic nature of renewable energy resources develops uncertainty in the decision-making processes of energy markets, which are not addressed in the traditional deterministic forecasts. This paper proposes a two-step process to implement a data-driven deterministic forecast-based probabilistic method for the potential quantification of uncertainty involved in wind power generation forecasts. In the first step, deterministic forecast approach integrates variational mode decomposition (VMD), discrete wavelet transforms (DWT) and Autoregressive integrated moving average (ARIMA) that creates a new combination of hybrid method for an effective short-term wind power forecast. The second step employs Gauss–Newton regression method to create an appropriate confidence interval (CI) and prediction intervals (PI) to assess the market risk allied with the uncertainty in wind power deterministic forecasts. CIs and PIs for the various confidence levels of 95%, 90% and 70% are constructed on the outcomes of the deterministic forecast using the Gauss–Newton regression method. Thereby the proposed two-step process approach presents a novel method for short-term wind power forecasts together with the uncertainty related to the forecasts. Testing with the historical wind speed data from two wind sites shows that VMD-DWT-ARIMA outperforms all other comparison models and Gauss–Newton regression method produces more rational CIs and PIs than the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

The authors can provide based on request.

Code availability

The authors can provide based on request.

References

  1. Jung, J.; Broadwater, R.P.: Current status and future advances for wind speed and power forecasting. Renew. Sustain. Energy Rev. 31(C), 762–777 (2014)

    Article  Google Scholar 

  2. Firat, U.; Engin, S.N.; Saraclar, M.; et al.: Wind speed forecasting based on second order blind identification and autoregressive model. In: 9th Int. Conf. on machine learning and applications, pp. 686–691 (2010)

  3. Erdem, E.; Shi, J.: ARMA based approaches for forecasting the tuple of wind speed and direction. Energy 88(4), 1405–1414 (2011)

    Google Scholar 

  4. Vishnupriyadharshini, A.; Vanitha, V.; Palanisamy, T.: Wind speed forecasting based on statistical Auto Regressive Integrated Moving Average (ARIMA) method. Int. J. Control Theory Appl. 9(15), 7681–7690 (2016)

    Google Scholar 

  5. Krishnaveny R. N.; Vanitha, V.; Jisma, M.: Forecasting of wind speed using ANN, ARIMA and Hybrid Models. In: IEEE Int. Conf. on Intelligent Computing, Instrumentation and Control Technologies, pp. 170–175 (2017)

  6. Ahmet, A.S.; Hacer, G.G.: Forecasting the biomass-based energy potential using artificial intelligence and geographic information systems: a case study. Eng. Sci. Technol. Int. J. 26, 100992 (2021)

    Google Scholar 

  7. Zhao, J.; Guo, Z.-H.; Su, Z.-Y.; Zhao, Z.-Y.; Xia, X.; Feng, L.: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed. Appl. Energy 162, 808–826 (2016)

    Article  Google Scholar 

  8. Li, G.; Shi, J.: On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 87(7), 2313–2320 (2010)

    Article  Google Scholar 

  9. Hervás-Martínez, C.; Gutiérrez, P.A.; Fernández, J.C.; et al.: Hyperbolic tangent basis function neural networks training by hybrid evolutionary programming for accurate short-term wind speed prediction. In: Proc. 9th Int. Sys. Design and Al. Conf., pp. 193–198 (2009)

  10. Salcedo-sanz, S.; Pastor, A.; Prieto, L., et al.: Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization—extreme learning machine aroach. Energy Convers. Manag. 87, 10–18 (2014)

    Article  Google Scholar 

  11. Salcedo-sanz, S.; Pastor, A.; Ser, J.D., et al.: A Coral Reefs Optimization algorithm with Harmony Search operators for accurate wind speed prediction. Renew. Energy 75, 93–101 (2015)

    Article  Google Scholar 

  12. Zhang, C.; Wei, H.; Zhao, J.; Liu, T.; Zhu, T.; Zhang, K.: Short-term wind speed forecasting using empirical mode decomposition and feature selection. Renew. Energy 96, 727–737 (2016)

    Article  Google Scholar 

  13. Mohammadi, K.; Shamshirband, S.; Tong, C.W.; Arif, M.; Petkovic, D.; Sudheer, Ch.: A new hybrid support vector machine-wavelet transform approach for estimation of horizontal global solar radiation. Energy Conver. Manag. 92, 162–171 (2015)

    Article  Google Scholar 

  14. Wang, J.; Zhang, W.; Li, Y.; Wang, J.; Dang, Z.: Forecasting wind speed using empirical mode decomposition and elman neural network. Appl. Soft Comput. 23, 452–459 (2014)

    Article  Google Scholar 

  15. Ye, L.; Liu, P.: Combined model based on EMD-SVM for short-term wind power prediction. Int. Proc. CSEE 31(31), 102–108 (2011)

    Google Scholar 

  16. Liu, H.; Tian, H.; Pan, D.; Li, Y.: Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks. Appl. Energy 107, 191–208 (2013)

    Article  Google Scholar 

  17. Gilles, J.: Empirical wavelet transform. IEEE Trans. Signal Process. 61(16), 3999–4010 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wu, Z.; Huang, N.E.: Ensemble empirical mode decomposition; a noise-assisted data analysis method. Adv. Adapt. Data Anal. 01(1), 1–41 (2009)

    Article  Google Scholar 

  19. Hufang, Y.; Zaiping, J.; Haiyan, L.: A hybrid wind speed forecasting system based on a ‘decomposition and ensemble’ strategy and fuzzy time series. Energies 10(9), 1–30 (2017)

    Google Scholar 

  20. Vanitha, V.; Raphel, D.; Resmi, R.: Forecasting of wind power using variational mode decomposition-adaptive neuro fuzzy inference system. Innov. Power Adv. Comput. Technol. 1, 1–4 (2019)

    Google Scholar 

  21. Ali, M.; Khan, A.; Rehman, N.: Hybrid multiscale wind speed forecasting based on variational mode decomposition. Int. Trans Electr. Energy Syst. 28, 1–21 (2018)

    Article  Google Scholar 

  22. Deyun, W.; Hongyuan, L.; Olivier, G.; Yanbing, L.: Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction. Renew. Energy 113, 1345–1358 (2017)

    Article  Google Scholar 

  23. Fu T: A hybrid prediction of wind speed based on variational mode decomposition method and long short-term memory. In: Int. Conf. Computer Engg. and Appl. (ICCEA), pp. 408–412 (2020)

  24. Bo, H.; Niu, X.; Wang, J.: Wind speed forecasting system based on the variational mode decomposition strategy and immune selection multi-objective dragonfly optimization algorithm. IEEE Access 7, 178063–178081 (2019)

    Article  Google Scholar 

  25. Zhang, G.; Xu, B.; Liu, H.; Hou, J.; Zhang, J.: Wind power prediction based on variational mode decomposition and feature selection. J. Modern Power Syst. Clean Energy 9(6), 1520–1529 (2021)

    Article  Google Scholar 

  26. Hui, L.; Xiwei, M.; Yanfei, L.: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM. Energy Conv. Manage. 159, 54–64 (2018)

    Article  Google Scholar 

  27. Yu-Xi, W.; Qing-Biao, W.; Jia-Qi, Z.: Data-driven wind speed forecasting using deep feature extraction and LSTM. IET Ren. Gen. 13(12), 2062–2069 (2019)

    Article  Google Scholar 

  28. Chun-Yang, Z., et al.: Predictive deep Boltzmann machine for multiperiod wind speed forecasting. IEEE Trans. Sust. Energy 6(4), 1416–1425 (2015)

    Article  Google Scholar 

  29. Haque, A.U.; Nehrir, M.H.; Mandal, P.: A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting. IEEE Trans. Power Syst. 29(4), 1663–1672 (2014)

    Article  Google Scholar 

  30. Kirthika, N.; Ramachandran, K. I.; Sasi, K. Kottayil.: Deep quantile regression based wind generation and demand forecasts. In: Proc. of 11th Int. Conf. on Soft Computing and Pattern recognition, pp. 112–122 (2021)

  31. Errouissi, R.; Cardenas-Barrera, J.; Meng, J.; et al.: Bootstrap prediction interval estimation for wind speed forecasting. In: IEEE Energy Convers. Congr. Expo. ECCE, pp. 1919–1924 (2015)

  32. Hong, Y.; Jinsha, Y.; Tiefeng, Z.: A model and algorithm for the minimum probability interval of wind power forecasting error based on Beta distribution. Proc. CSEE 35(9), 2135–2142 (2015)

    Google Scholar 

  33. Jinhua, Z.; Jie, Y.; David, I., et al.: Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Appl. Energy 241, 229–244 (2019)

    Article  Google Scholar 

  34. Qin, L.; Jun, W.; Weiting, Q.: Denoising of wind speed data by wavelet thresholding. In IEEE Chinese Automation Congress, pp. 518–521 (2013)

  35. Hu, J.; Wang, J.; Zeng, G.: A hybrid forecasting approach applied to wind speed time series. Renew. Energy 60(1), 185–194 (2013)

    Article  Google Scholar 

  36. Saida, M.; Gobind, G. P.: Wind speed and wind power forecasting using wavelet denoising-GMDH neural network. In 5th Int. Conf. on Electrical Engineering Boumerdes (2017)

  37. Zhao, Y.; Yue, Y.; Huang, J., et al.: CEEMD and wavelet transform jointed de-noising method. Progress Geophys. (in Chin.) 30(6), 2870–2877 (2015)

    Google Scholar 

  38. Shuai, W.; Biao, Z.; Hong-Bin, S.: Objective resolution measurement in single particle reconstructions based on a new spectral signal-to-noise ratio estimation. In: Chinese Control and Decision Conf., pp. 2067–2072 (2016)

  39. Bates and Watts: Nonlinear Regression Analysis and Its Applications. Wiley, Hoboken (1998)

    Google Scholar 

  40. Anne, K.; Peter, L.B.; Jasper, D., et al.: Confidence and Prediction Intervals For Pharmacometric Models. CPT Pharmacometr. Syst. Pharmacol. 7(6), 360–373 (2018)

    Article  Google Scholar 

  41. Gamesa - wind turbine datasheet: https://en.wind-turbinemodels.com/turbines/428gamesa-g114-2.0mw (2020)

  42. Vaishali, S.; Gupta, S.C.; Nema, R.K.: A critical review on wind turbine power curve modelling techniques and their applications in wind based energy systems. J. Energy 2016, 1–18 (2016)

    Article  Google Scholar 

  43. Ren, Y.; Suganthan, P.; Srikanth, N.: A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods. IEEE Trans. Sustain. Energy 6(1), 236–244 (2015)

    Article  Google Scholar 

  44. Pinson, P.; Nielsen, H.A.; Møller, J.K., et al.: Nonparametric probabilistic forecasts of wind power; required properties and evaluation. Wind Energy 10, 497–516 (2017)

    Article  Google Scholar 

  45. Khosravi, A.; Nahavandi, S.; Creighton, D., et al.: Comprehensive review of neural ne work-based prediction intervals and new advances. IEEE Trans. Neural Netw. 22(9), 1341–1356 (2011)

    Article  Google Scholar 

  46. NIWE: http://niwe.res.in/NIWE_WRA_DATA/ (2020)

  47. Central Electricity Regulatory Commission orders: http://www.cercind.gov.in/2017/orders/187N.pdf (2020)

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kirthika.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirthika, N., Ramachandran, K.I. & Kottayil, S.K. A Data-Driven Deterministic Forecast-Based Probabilistic Method for Uncertainty Estimation of Wind Power Generation. Arab J Sci Eng 47, 14147–14162 (2022). https://doi.org/10.1007/s13369-022-06683-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06683-y

Keywords

Navigation