Skip to main content
Log in

Numerical and Experimental Investigation of Fracture in Roll Forming Process Using Lou–Huh Fracture Criterion

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present paper aimed to discuss the fracture in a symmetrical channel-shaped product during the roll forming process using Lou–Huh ductile fracture criterion. Employing the roll forming process is increasing to manufacture different products due to high manufacturing speed, and low cost. Fracture is one of the main limiting factors in the roll forming process. Abaqus FEA was employed to simulate the fracture phenomenon. To calibrate the Lou–Huh ductile failure criterion, uniaxial tensile, plane-strain, and in-plane shear tests were used to obtain three constants of the fracture criterion. To validate the numerical results, the experimental tests were carried out on a 6061-T6 aluminum sheet (thickness of 2 mm, bending radius of 1 mm, and bending angles of 30° and 45°). The results showed that the fracture was only observed at the bending angle of 45°. The numerical model was validated by comparing the numerical and experimental results. The difference between the fracture location in the numerical and experimental results was 12.4%. Moreover, the effects of sheet thickness, bending radius, and bending angle on fracture were examined using the Lou–Huh ductile fracture criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Wang, H.; Yan, Y.; Jia, F.; Han, F.: Investigations of fracture on DP980 steel sheet in roll forming process. J. Manuf. Process. 22, 177–184 (2016)

    Article  Google Scholar 

  2. Danish, M.; Nadhari, W.N.A.W.; Ahmad, T.; Hashim, R.; Sulaiman, O.; Ahmad, M.; Abd.Karim, N.; Salleh, K.M.: Surface measurement of binderless bio-composite particleboard through contact angle and fractal surfaces. Measurement 140, 365–372 (2019)

    Article  Google Scholar 

  3. Elyasi, M.; Ghadikolaee, H.T.; Hosseinzadeh, M.: Investigation of dimensional accuracy in forming of metallic bipolar plates with serpentine flow field. Int. J. Adv. Manuf. Technol. 96, 1045–1060 (2018)

    Article  Google Scholar 

  4. Seong, D.Y.; Haque, M.Z.; Kim, J.B.; Stoughton, T.B.; Yoon, J.W.: Suppression of necking in incremental sheet forming. J. Solids Struct. 51, 2840–2849 (2014)

    Article  Google Scholar 

  5. Mirnia, M.J.; Shamsari, M.: Numerical prediction of failure in single point incremental forming using aphenomenological ductile fracture criterion. J. Mater. Process. Technol. 244, 17–43 (2017)

    Article  Google Scholar 

  6. Habibi, N.; Zarei, A.; Abedi, H.: An investigation into the fracture mechanism of twinning-induced-plasticity steel sheets under various strain paths. J. Mater. Process. Technol. 224, 102–1166 (2015)

    Article  Google Scholar 

  7. Bao, Y.; Wierzbicki, T.: A comparative study of three groups of ductile fracture loci in the 3D space. Eng. Fract. Mech. 135, 147–167 (2015)

    Article  Google Scholar 

  8. Zhan, M.; Gu, C.; Jiang, Z.; Hu, L.; Yang, H.: Application of ductile fracture criteria in spin-forming and tube-bending processes. Comput. Mater. Sci. 47, 353–365 (2009)

    Article  Google Scholar 

  9. Hansheng, S.; Gelegele, T.: Investigation of anisotropy problems in the sheet metal forming using finite element method. Int. J. Mater. Form. 4(4), 357–369 (2011)

    Article  Google Scholar 

  10. Lihe, N.; Seong, D.Y.; Haque, M.Z.; Kim, J.B.; Stoughton, T.B.; Yoon, J.W.: Suppression of necking in incremental sheet forming. Int. J. Solids Struct. 51, 2840–2849 (2009)

    Google Scholar 

  11. Hee, L.; Liu, J.; Cui, Z.; Yang, C.; Chen, F.: Ductile fracture prediction of 316LN stainless steel in hot deformation process. J. Iron Steel Res. 21, 923–930 (2014)

    Article  Google Scholar 

  12. Linardona, C.; Favierb, D.; Chagnonb, G.; Grueza, B.: A conical mandrel tube drawing test designed to assess failure criteria. J. Mater. Process. Technol. 214, 347–357 (2013)

    Article  Google Scholar 

  13. Hashemi, S.J.; Moslemi Naeini, H.; Liaghat, G.H.; Azizi Tafti, R.: Prediction of bulge height in warm hydroforming of aluminum tubes using ductile fracture criteria. Arch. Civ. Mech. Eng. 15, 19–29 (2015)

    Article  Google Scholar 

  14. Jiang, L.J.; Peng, D.; Li, Y.: Research on strip deformation in the cage roll forming process of ERW round pipes. J. Mater. Process. Technol. 209(10), 4850–4856 (2009)

    Article  Google Scholar 

  15. Gatea, S.; Ou, H.; Lu, B.; McCartney, G.: Modelling of ductile fracture in single point incremental forming using a modified GTN model. Eng. Fract. Mech. 186, 59–79 (2017)

    Article  Google Scholar 

  16. Dadgar Asl, Y.; Sheikhi, M.M.; Pourkamali Anaraki, A.; Panahizadeh Rahimloo, V.; Hosseinpour Gollo, M.: Experimental and numerical analysis of fracture on flexible roll forming process of channel section in aluminum 6061–T6 sheet. Modares Mech. Eng. 16(5), 329–338 (2016) (in Persian)

    Google Scholar 

  17. Paralikas, J.; Salonitis, K.; Chryssolouris, G.: Investigation of the effects of main roll forming process parameters on quality for aV-section profile from AHSS. Int. J. Adv. Manuf. Technol. 44, 223–237 (2009)

    Article  Google Scholar 

  18. Talebi-Ghadikolaee, H.; Moslemi Naeini, H.; Mirnia, M.J.; Mirzai, M.A.; Gorji, H.; Alexandrov, S.: Fracture analysis on U-bending of AA6061 aluminum alloy sheet using phenomenological ductile fracture criteria. Thin-Walled Struct. 148, 106566 (2020)

    Article  Google Scholar 

  19. Talebi-Ghadikolaee, H.; Elyasi, M.; Mirnia, M.J.: Investigation of failure during rubber pad forming of metallic bipolar plates. Thin-Walled Struct. 150, 106671 (2020)

    Article  Google Scholar 

  20. Lou, Y.; Huh, H.: Evaluation of ductile fracture criteria in a general three-dimensional stress state considering the stress triaxiality and the lode parameter. Acta Mech. Solida Sin. 26, 642–658 (2013)

    Article  Google Scholar 

  21. Talebi-Ghadikolaee, H.; Moslemi Naeini, H.; Mirnia, M.J.; Mirzai, M.A.; Alexandrov, S.; Gorji, H.: Experimental and numerical investigation of failure during bending of AA6061 aluminum alloy sheet using the modified Mohr-Coulomb fracture criterion. Int. J. Adv. Manuf. Technol. 105, 5217–5237 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support provided by the Iran National Science Foundation [Project No. 96004204]. Also, the author would like to thank Dr. Hamed Barghikar and Paya Profile Co. for their assistance with experimental tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Moslemi Naeini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeinali, M.S., Naeini, H.M., Talebi-Ghadikolaee, H. et al. Numerical and Experimental Investigation of Fracture in Roll Forming Process Using Lou–Huh Fracture Criterion. Arab J Sci Eng 47, 15591–15602 (2022). https://doi.org/10.1007/s13369-022-06662-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06662-3

Keywords

Navigation