Skip to main content
Log in

Improving Tribological Performance of Piston Ring Steel Substrates by DLC/Nano-crystalline Diamond Coating

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The goal of this study is to reveal the effects of N2 incorporation in DLC coatings in terms of carbon bond formation and to understand the tribological behavior of this coating by conducting thorough investigations on the coated substrates. This study reports the effects of diamond-like carbon (DLC) and nano-crystalline diamond (NCD) film on improving tribological behavior under harsh friction conditions. The film was deposited on AISI 1018 low-carbon steel alloy substrates cut from a piston ring of an internal combustion engine via electron cyclotron resonance plasma chemical vapor deposition (ECR-CVD) technique at bias voltage of − 600 V using methane (CH4) as carbon source and nitrogen (N2) to crystallize the carbon bonds in DLC/NCD form by varying the flow rates (CH4/N2 plasma). The coated substrates were analyzed in terms of friction and wear (reciprocating friction-wear test module), surface morphology (SEM, AFM), chemical composition (EDX, XRD), hardness, surface roughness, and bond structure (Raman). The film deposited at 8 sccm of N2 and 6.05 sccm of CH4 depicted the maximum hardness (47 HRC) and minimum wear rate (6.35*10–9 mm3/Nm) during the abrasion tests. It was evident that DLC/NCD film was deposited on the substrate according to related analyses and the DLC/NCD coating on the piston ring material provides considerable improvements on tribological performance leading to reduced fuel consumption, cleaner and more efficient fired engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Padgurskas, J.; Raimundas, R.; Igoris, P.; Raimondas, K.: Tribological properties of lubricant additives of Fe Cu and Co nanoparticles. Tribol. Int. 60, 224–232 (2013)

    Article  Google Scholar 

  2. Ali, M.K.A.; Peng, F.; Hussein, A.Y.; Mohamed, A.A.; Abdelkareem, F.A.; Ahmed, E.; Hou, X.: Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives. Appl. En. 211, 461–478 (2018)

    Article  Google Scholar 

  3. Suryawanshi, S.R.; Pattiwar, J.T.: Effect of TiO2 nanoparticles blended with lubricating oil on the tribological performance of the journal bearing. Tribol. in Ind. 40, 370–391 (2018)

    Article  Google Scholar 

  4. Zin, V.; Filippo, A.; Simona, B.; Laura, C.; Angela, G.; Monica, F.: The synthesis and effect of copper nanoparticles on the tribological properties of lubricant oils. IEEE Trans. on Nanotechnol. 12, 751–759 (2013)

    Article  Google Scholar 

  5. Bi, S.; Kai, G.; Zhigang, L.; Jiangtao, W.: Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid. En. Conv. Man. 52, 733–737 (2011)

    Article  Google Scholar 

  6. Xing, M.; Ruixiang, W.; Jianlin, Y.: Application of fullerene C60 nano-oil for performance enhancement of domestic refrigerator compressors. Int. J. Ref. 40, 398–403 (2014)

    Article  Google Scholar 

  7. Ali, M.K.A.; Hou, X.; Liqiang, M.; Chen, B.; Richard, T.; Cai, Q.: Reducing frictional power losses and improving the scuffing resistance in automotive engines using hybrid nanomaterials as nano-lubricant additives. Wear 364–365, 270–281 (2016)

    Article  Google Scholar 

  8. Mehta, J.; Grewal, J.S.; Pallav, G.: Wear behavior of boron steel coated cerium oxide tungsten carbide cobalt coating. J. Appl. Sci. Eng. 21, 519–526 (2018)

    Google Scholar 

  9. Korkmaz, K.: Investigation and characterization of electrospark deposited chromium carbide-based coating on the steel. Surf. Coat. Tech. 272, 1–7 (2015)

    Article  Google Scholar 

  10. Li, K.Y.; Zhou, Z.F.; Bello, I.; Lee, C.S.; Lee, S.T.: Study of tribological performance of ECR-CVD diamond-like carbon coatings on steel substrates. Part 1. The effect of processing parameters and operating conditions. Wear 258, 1577–1588 (2005)

    Article  Google Scholar 

  11. Seker, Z.; Ozdamar, H.; Esen, M.; Esen, R.; Kavak, H.: The effect of nitrogen incorporation in DLC films deposited by ECR microwave plasma CVD. Appl. Surf. Sci. 314, 46–51 (2014)

    Article  Google Scholar 

  12. Friedrich, C.; Berg, G.; Broszeit, E.; Rick, F.; Holland, J.: PVD CrxN coatings for tribological application on piston rings. Surf. and Coat. Tech. 97, 661–668 (1997)

    Article  Google Scholar 

  13. Robertson, J.: Diamond-like amorphous carbon. Mat. Sci. Eng. 37, 129–281 (2002)

    Article  Google Scholar 

  14. Enke, K.: Dry machining and increase of endurance of machine parts with improved doped DLC coatings on steel, ceramics and aluminium. Surf. and Coat. Tech. 116–119, 488–491 (1999)

    Article  Google Scholar 

  15. Zeng, A.; Yongbai, Y.; Marcela, B.; David, M.: Ohmic contact to nitrogen doped amorphous carbon films. Surf. and Coat. Tech. 198, 202–205 (2005)

    Article  Google Scholar 

  16. Rusli, E.; Yoon, S.F.; Yang, H.; Ahn, J.; Zhang, Q.; Wu, Y.S.; New, W.L.: Influence of process pressure on the growth of hydrocarbon films under direct DC bias in an electron cyclotron resonance plasma. J. Appl. Phys. 84, 5277–5282 (1998)

    Article  Google Scholar 

  17. Rusli, E.; Yoon, S.F.; Wu, Y.S.; Yang, H.; Ahn, J.; Zhang, Q.: Control of ion energy using a screen-grid in an electron cyclotron resonance chemical vapour deposition system. Diam. Related Mat. 8, 477–480 (1999)

    Article  Google Scholar 

  18. Poluektov, N.P.; Kharchenko, V.N.; Usatov, I.G.: Ionization of sputtered metal atoms in a microwave ECR plasma source. Plas. Phys. Rep. 27, 625–633 (2001)

    Article  Google Scholar 

  19. Takehiro, S.; Norimasa, Y.; Haruo, S.; Shoso, S.; Yasuhiro, H.: Sputtering of aluminum film using microwave plasma with high magnetic field. Japan J. Appl. Phys. 30, 3657–3661 (1991)

    Article  Google Scholar 

  20. Holber, W.M.; Logan, J.S.; Grabarz, H.J., et al.: Copper deposition by electron cyclotron resonance plasma. J. Vac. Sci. Technol. 11, 2903 (1993)

    Article  Google Scholar 

  21. Gorbatkin, S.M.; Poker, D.B.; Doughty, C., et al.: Cu metallization using a permanent magnet electron cyclotron resonance microwave plasma/sputtering hybrid system. J. Vac. Sci. Technol. 14, 1853 (1996)

    Article  Google Scholar 

  22. Yoon, S.F.; Yang, H.; Rusli, A.; Ahn, J.; Zhang, Q.: The effects of self-generated DC bias on the characteristics of diamond-like carbon films prepared using ECR-CVD. Diam. and Related Mat. 7, 70–76 (1998)

    Article  Google Scholar 

  23. Chiba, K.; Takahashi, T.; Kageyama, T.; Hironori, O.: Low-emissivity coating of amorphous diamond-like Carbon/Ag-alloy multilayer on glass. Appl. Sur. Sci. 246, 48–51 (2005)

    Article  Google Scholar 

  24. Sharma, R.; Barhai, P.K.; Neelam, K.: Corrosion resistant behaviour of DLC films. Thin Solid Films 516, 5397–5403 (2008)

    Article  Google Scholar 

  25. Salvadori, M.C.; Martins, D.R.; Cattani, M.: DLC coating roughness as a function of film thickness. Surf. and Coat. Tech. 200, 5119–5122 (2006)

    Article  Google Scholar 

  26. Haq, A.J.; Munroe, P.R.; Hoffman, M.; Martin, P.J.; Bendavid, A.: Deformation behaviour of DLC coatings on (111) silicon substrates. Thin Solid Films 516, 267–271 (2007)

    Article  Google Scholar 

  27. Jia, B.B.; Tong, S.L.; Xu, J.L.; Pei, H.C.: Tribological behaviors of several polymer-polymer sliding combinations under dry friction and oil-lubricated conditions. Wear 262, 1353–1359 (2007)

    Article  Google Scholar 

  28. Benea, L.; Sorin, B.; Eliza, D.; Nadège, C.; Olivier, R.; Pierre, P.; Jean, P.C.: Fretting and wear behaviors of Ni/nano-WC composite coatings in dry and wet conditions. Mat. and Des. 65, 550–558 (2015)

    Article  Google Scholar 

  29. Chi, H.; Longtao, J.; Guoqin, C.; Pengchao, K.; Xiu, L.; Gaohui, W.: Dry sliding friction and wear behavior of (TiB2+h-BN)/2024 Al composites. Mat. and Des. 87, 960–968 (2015)

    Google Scholar 

  30. Wang, S.G.; Zhang, Q.; Yoon, S.F.; Ahn, J.; Zhou, Q.; Wang, Q.; Yang, D.J.; Li, J.Q.; Shanyong, S.Z.: Electron field emission enhancement effects of nano-diamond films. Surf. Coat. Tech. 167, 143–147 (2003)

    Article  Google Scholar 

  31. Zhang, C., Shao, T.: Diamond-like carbon (DLC) coatings, Phys. and Chem. of micro-nanotribol., ASTM International, West Conshohocken, 147 (2008)

  32. Wang, L.; Gao, Y.; Xue, Q.; Liu, H.; Xu, T.: Effects of nano-diamond particles on the structure and tribological property of Ni-matrix nanocomposite coatings. Mat. Sci. Eng. A 390, 313–318 (2005)

    Article  Google Scholar 

  33. Jatti, V.S.; Laad, M.; Singh, T.P.: Taguchi approach for diamond-like carbon film processing. Proc. Mat. Sci. 6, 1017–1023 (2014)

    Google Scholar 

  34. Zhang, S.; Zeng, X.T.; Xie, H.; Hing, P.: A phenomenological approach for the Id/Ig ratio and sp3 fraction of magnetron sputtered a-C films. Sur. Coat. Tech. 123, 256–260 (2000)

    Article  Google Scholar 

  35. Lubwama, M.; McDonnell, K.A.; Kirabira, J.B.; Sebbit, A.; Sayers, K.; Dowling, D.; Corcoran, B.: Characteristics and tribological performance of DLC and Si-DLC films deposited on nitrile rubber. Surf. and Coat. Tech. 206, 4585–4593 (2012)

    Article  Google Scholar 

  36. Lubwama, M.; Corcoran, B.; Rajani, K.V.; Wong, C.S.; Kirabira, J.B.; Sebbit, A.; McDonnell, K.A.; Dowling, D.; Sayers, K.: Raman analysis of DLC and Si-DLC films deposited on nitrile rubber. Surf. and Coat. Tech. 232, 521–527 (2013)

    Article  Google Scholar 

  37. Chu, P.K.; Li, L.: Characterization of amorphous and nanocrystalline carbon films. Mat. Chem. Phys. 96, 253–277 (2006)

    Article  Google Scholar 

  38. Cho, N.H.; Veirs, D.K.; Ager, J.W.; Rubin, M.D.; Hopper, C.B.; Bogy, D.B.: Effects of substrate temperature on chemical structure of amorphous carbon films. J. Appl. Phys. 71, 2243–2248 (1992)

    Article  Google Scholar 

  39. Albu, C.; Eremia, S.A.V.; Veca, M.L.; Avram, A.; Popa, R.C.; Pachiu, C.; Romanitan, C.; Kusko, M.; Gavrila, R.; Radoi, A.: Dataset on large area nano-crystalline graphitefilm (NCG) grown on SiO2 using plasma-enhanced chemical vapour deposition. Data Brief 24, 1–6 (2019)

    Article  Google Scholar 

  40. Fu, T.; Zhou, Z.F.; Zhou, Y.M.; Zhu, X.D.; Zeng, Q.F.; Wang, C.P.; Li, K.Y.; Lu, J.: Mechanical properties of DLC coating sputter deposited on surface nanocrystallized stainless steel. Sur. Coat. Tech. 207, 555–564 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Cukurova University, Department of Physics, Plasma Laboratory staff for their help in conducting this study.

Funding

This work was financially supported by Cukurova University, Scientific Research Projects under Grant numbers: FBA-2019–11504 and FBA-2018–10899.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Can Yilmaz.

Ethics declarations

Conflict of interest

On behalf of the authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, A.C., Esen, M. Improving Tribological Performance of Piston Ring Steel Substrates by DLC/Nano-crystalline Diamond Coating. Arab J Sci Eng 47, 15441–15453 (2022). https://doi.org/10.1007/s13369-022-06660-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06660-5

Keywords

Navigation