Skip to main content
Log in

Significance of Lorentz Force and Viscous Dissipation on the Dynamics of Propylene Glycol: Water Subject to Joule Heating Conveying Paraffin Wax and Sand Nanoparticles Over an Object with a Variable Thickness

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

With emphasis on the motion of PG–Water + Paraffin Wax + Sand and PG–Water + Paraffin Wax on an object with a variable thickness experiencing Joule dissipation and nth order chemical reaction, nothing is known on the increasing Lorentz force, viscous dissipation, Prandtl number, and Schmidt number. The mathematical model that governs the transport phenomenon presented in this report was reduced to a coupled ordinary differential equations, non-dimensionalized, parameterized, and solved numerically using bvp4c solver (MATLAB built-in function). A statistical tool (correlation coefficient) was used to confirm the impact of pertinent parameters on heat and mass transfer rates, and surface drag force. It is worth concluding that magnetic field parameter and Eckert number have significant negative association with heat transfer rate. There is a significant positive association among chemical reaction parameter and mass transfer rate. Fluid temperature ameliorates with larger Eckert number, and surface drag force diminishes with larger magnetic field parameter. Prandtl number minimizes the temperature and escalates the heat transfer rate. Concentration minifies with larger Schmidt number and chemical reaction parameter. Furthermore, it is detected that the fluid concentration gets ameliorated with the raise in the order of chemical reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lee, L.L.: Boundary layer over a thin needle. Phys. Fluids 10(4), 820–822 (1967)

    Article  MATH  Google Scholar 

  2. Narain, J.P.; Uberoi, M.S.: Combined forced and free-convection over thin needles. Int. J. Heat Transf. 16, 1505–1512 (1973)

    Article  Google Scholar 

  3. Grosan, T.; Pop, I.: Forced convection boundary layer flow past nonisothermal thin needles in nanofluids. J. Heat Transf. 133, 054503–054511 (2011)

    Article  Google Scholar 

  4. Trimbitas, R.; Grosan, T.: Mixed convection boundary layer flow along vertical thin needles in nanofluids. Int. J. Numer. Meth. Heat Fluid Flow 24(3), 579–594 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Khuzaimah, S.S.; Ishak, A.; Pop, I.: Boundary layer flow past a continuously moving thin needle in a nanofluid. Appl. Therm. Eng. 114, 58–64 (2016)

    Google Scholar 

  6. Hayat, T.; Ijaz Khan, M.; Farooz, M.; Yasmeen, T.; Alsaedi, A.: Water-carbon nanofluid flow with variable heat flux by a thin needle. J. Mol. Liq. 224, 786–791 (2016)

    Article  Google Scholar 

  7. Sulochana, C.; Aswinkumar, G.P.; Sandeep, N.: Joule heating effect on a continuously moving thin needle in MHD Sakiadis flow with thermophoresis and Brownian moment. Eur. Phys. J. Plus 132, 387 (2017)

    Article  Google Scholar 

  8. Bano, S.; Singh, B.B.: An integral treatment for coupled heat and mass transfer by natural convection from a radiating vertical tin needle in a porous medium. Int. Commun. Heat Mass Transf. 84, 41–48 (2017)

    Article  Google Scholar 

  9. Afridi, M.I.; Qasim, M.: Entropy generation and heat transfer in boundary layer flow over a thin needle moving in a parallel stream in the presence of nonlinear Rosseland radiation. Int. J. Therm. Sci. 123, 117–128 (2018)

    Article  Google Scholar 

  10. Afridi, M.I.; Tlili, I.; Qasim, M.; Khan, I.: Nonlinear Rosseland thermal radiation and energy dissipation effects on entropy generation in CNTs suspended nanofluids flow over a thin needle. Bound. Value Probl. 1, 148 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kọríkọ, O.K.; Adegbie, K.S.; Oke, A.S.; Animasaun, I.L.: Exploration of Coriolis force on motion of air over the upper horizontal surface of a paraboloid of revolution. Phys. Scr. 95(3), 035210 (2020)

    Article  Google Scholar 

  12. Oke, A.S.; Mutuku, W.N.; Kimathi, M.; Animasaun, I.L.: Insight into the dynamics of non-Newtonian Casson fluid over a rotating non-uniform surface subject to Coriolis force. Nonlinear Eng. 9(1), 398–411 (2020)

    Article  Google Scholar 

  13. Oke, A.S.; Mutuku, W.N.; Kimathi, M.; Animasaun, I.L.: Coriolis effects on MHD newtonian flow over a rotating non-uniform surface. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 235, 3875–3887 (2020)

    Article  Google Scholar 

  14. Oke, A.S.; Mutuku, W.N.: Significance of coriolis force on eyring-powell flow over a rotating non-uniform surface. Appl. Appl. Math. Int. J. (AAM) 16(1), 36 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Gul, T.; Khan, M.A.; Noman, W.; Khan, I.; Alkanhal, T.A.; Tlili, I.: Fractional order forced convection carbon nanotube nanofluid flow passing over a thin needle. Symmetry 11, 312 (2019)

    Article  MATH  Google Scholar 

  16. Souayeh, B.; Gnaneswara Reddy, M.; Sreenivasulu, P.; Poornima, T.; Rahimi-Gorji, M.; Alarifi, I.M.: Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle. J. Mol. Liq. 284, 163–174 (2019)

    Article  Google Scholar 

  17. Sureshkumar Raju, S.; Ganesh Kumar, K.; Rahimi-Gorji, M.; Khan, I.: Darcy-Forchheimer flow and heat transfer augmentation of a viscoelastic fluid over an incessant moving needle in the presence of viscous dissipation. Microsyst. Technol. 25(9), 3399–3405 (2019)

    Article  Google Scholar 

  18. Waini, I.; Ishak, A.; Pop, I.: Hybrid nanofluid flow past a permeable moving thin needle. Mathematics 8(4), 612 (2020)

    Article  Google Scholar 

  19. Gul, T.; Rahman, J.U.; Bilal, M.; Saeed, A.; Alghamdi, W.; Mukhtar, S.; Albaraiah, H.; Bonyah, E.: Viscous dissipated hybrid nanoliquid flow with Darcy-Forchheimer and forced convection over a moving thin needle. AIP Adv. 10(10), 105308 (2020)

    Article  Google Scholar 

  20. Tlili, I.; Ramzan, M.; Kadry, S.; Kim, H.W.; Nam, Y.: Radiative mhd nanofluid flow over a moving thin needle with entropy generation in a porous medium with dust particles and Hall current. Entropy 22(3), 354 (2020)

    Article  MathSciNet  Google Scholar 

  21. Tlili, I.; Nabwey, H.A.; Reddy, M.G.; Sandeep, N.; Pasupula, M.: Effect of resistive heating on incessantly poignant thin needle in magnetohydrodynamic Sakiadis hybrid nanofluid. Ain Shams Eng. J. 12(1), 1025–1032 (2021)

    Article  Google Scholar 

  22. Bilal, M.; Urva, Y.: Analysis of non-Newtonian fluid flow over fine rotating thin needle for variable viscosity and activation energy. Arch. Appl. Mech. 91(3), 1079–1095 (2021)

    Article  Google Scholar 

  23. Puneeth, V.; Manjunatha, S.; Makinde, O.D.; Gireesha, B.J.: Bioconvection of a radiating hybrid nanofluid past a thin needle in the presence of heterogeneous–homogeneous chemical reaction. J. Heat Transf. 143(4), 042502 (2021)

    Article  Google Scholar 

  24. Ibrahim, S.M.: Unsteady MHD convective heat and mass transfer past an infinite vertical plate embedded in a porous medium with radiation and chemical reaction under the influence of Dufour and Soret effects. Chem. Process Eng. Res. 19, 25–38 (2014)

    Google Scholar 

  25. Mythili, D.; Sivaraj, R.: Influence of higher order chemical reaction and non-uniform heat source/sink on Casson fluid flow over a vertical cone and flat plate. J. Mol. Liq. 216, 466–475 (2016)

    Article  Google Scholar 

  26. Hayat, T.; Qayyum, S.; Waqas, M.; Ahmed, B.: Influence of thermal radiation and chemical reaction in mixed convection stagnation point flow of Carreau fluid. Res. Phys. 7, 4058–4064 (2017)

    Google Scholar 

  27. Zeeshan, A.; Shehzad; Ellahi, R.: Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions. Res. Phys. 8, 502–512 (2018)

    Google Scholar 

  28. Veera Krishna, M.; Gangadhar Reddy, M.: MHD free convective boundary layer flow through porous medium past a moving vertical plate with heat source and chemical reaction. Mater. Today Proc. 5, 91–98 (2018)

    Article  Google Scholar 

  29. Jayachandra Babu, M.; Sandeep, N.; Ali, M.E.; Nuhait, A.O.: Magnetohydrodynamic dissipative flow across the slendering stretching sheet with temperature dependent variable viscosity. Res. Phys. 7, 1801–1807 (2017)

    Google Scholar 

  30. Santoshi, P.N.; Reddy, G.V.R.; Padma, P.: Numerical study of Carreau nanofluid flow under slips. Int. J. Appl. Comput. Math. 5(5), 1–25 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Vijaya, K.; Reddy, G.V.R.: Magnetohydrodynamic casson fluid flow over a vertical porous plate in the presence of radiation, Soret and chemical reaction effects. J. Nanofluids 8(6), 1240–1248 (2019)

    Article  Google Scholar 

  32. Kavitha, P.; Naikoti, K.: MHD boundary layer flow of non-Newtonian power-law nanofluid with thermal radiation. J. Nanofluids 8(1), 84–93 (2019)

    Article  Google Scholar 

  33. Eid, M.R.; Mabood, F.; Mahny, K.L.: On 3D Prandtl nanofluid flow with higher-order chemical reaction. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 235, 3962–3974 (2020)

    Article  Google Scholar 

  34. Gayatri, M.; Reddy, K.J.; Babu, M.J.: Slip flow of Carreau fluid over a slendering stretching sheet with viscous dissipation and Joule heating. SN Appl. Sci. 2(3), 1–11 (2020)

    Article  Google Scholar 

  35. Vijaya, N.; Arifuzzaman, S.M.; Raghavendra Sai, N.; Rao, M.: Analysis of Arrhenius activation energy in electrically conducting casson fluid flow induced due to permeable elongated sheet with chemical reaction and viscous dissipation. Front. Heat Mass Transf. (FHMT) 15(1), 26 (2020)

    Google Scholar 

  36. Gopal, D.; Saleem, S.; Jagadha, S.; Ahmad, F.; Almatroud, A.O.; Kishan, N.: Numerical analysis of higher order chemical reaction on electrically MHD nanofluid under influence of viscous dissipation. Alex. Eng. J. 60(1), 1861–1871 (2021)

    Article  Google Scholar 

  37. Al-Hossainy, A.F.; Eid, M.R.: Combined experimental thin films, TDDFT-DFT theoretical method, and spin effect on [PEG-H2O/ZrO2+ MgO] hybrid nanofluid flow with higher chemical rate. Surfaces Interfaces 23, 100971 (2021)

    Article  Google Scholar 

  38. Swain, K.; Mebarek-Oudina, F.; Abo-Dahab, S.M.: Influence of hybrid nanoparticles on an exponentially porous shrinking sheet with chemical reaction and slip boundary conditions. J. Therm. Anal. Calorim. 147, 1561–1570 (2021)

    Article  Google Scholar 

  39. Li, Y.X.; Khan, M.I.; Khan, S.A.; Waqas, M.: Influence of thermo-diffusion and dissipation thermo on the characteristics of optimized mixed convective radiative laminar flow with chemical reaction. Comput. Theor. Chem. 1200, 113245 (2021)

    Article  Google Scholar 

  40. Vedavathi, N.; Dharmaiah, G.; Balamurugan, K.S.; Ramakrishna, K.: A study on MHD boundary layer flow rotating frame nanofluid with chemical reaction. Front. Heat Mass Transf. 12(10), 1–9 (2019)

    Google Scholar 

  41. Sujatha, T.; Reddy, K.J.; Kumar, J.G.: Chemical reaction effect on nonlinear radiative MHD nanofluid flow over cone and wedge. Defect Diffus. Forum 393, 83–102 (2019)

    Article  Google Scholar 

  42. Sheikholeslami, M.; Arabkoohsar, A.; Jafaryar, M.: Impact of a helical-twisting device on the thermal–hydraulic performance of a nanofluid flow through a tube. J. Therm. Anal. Calorim. 139(5), 3317–3329 (2020)

    Article  Google Scholar 

  43. Dharmaiah, G.; Sridhar, W.; Balamurugan, K.S.; Chandra Kala, K.: Hall and ion slip impact on magneto-titanium alloy nanoliquid with diffusion thermo and radiation absorption. Int. J. Ambient Energy (2020). https://doi.org/10.1080/01430750.2020.1831597

    Article  Google Scholar 

  44. Dharmaiah, G.; Baby Rani, C.H.; Vedavathi, N.; Balamurugan, K.S.: Hall and ion slip effects on Ag-water based MHD nanofluid flow over a semi-infinite vertical plate embedded in a porous medium. Front. Heat Mass Transf. 14, 6 (2020)

    Article  Google Scholar 

  45. Revathi, G.; Sajja, V.S.; Raju, C.S.K.; Babu, M.J.: Numerical simulation for Arrhenius activation energy on the nanofluid dissipative flow by a curved stretching sheet. Eur. Phys. J. Spec. Topics 230, 1283–1292 (2021)

    Article  Google Scholar 

  46. Oke, A.S.; Animasaun, I.L.; Mutuku, W.N.; Kimathi, M.; Shah, N.A.; Saleem, S.: Significance of Coriolis force, volume fraction, and heat source/sink on the dynamics of water conveying 47 nm alumina nanoparticles over a uniform surface. Chin. J. Phys. 71, 716–727 (2021)

    Article  MathSciNet  Google Scholar 

  47. Manikandan, S.; Rajan, K.S.: New hybrid nanofluid containing encapsulated paraffin wax and sand nanoparticles in propylene glycol-water mixture: potential heat transfer fluid for energy management. Energy Convers. Manag. 137, 74–85 (2017)

    Article  Google Scholar 

  48. Returi, M.C.; Konijeti, R.; Dasore, A.: Heat transfer enhancement using hybrid nanofluids in spiral plate heat exchangers. Heat Transf. Asian Res. 48(7), 3128–3143 (2019)

    Article  Google Scholar 

  49. Mahesh, A.; Varma, S.V.K.; Raju, C.S.K.; Babu, M.J.; Animasaun, I.L.; Shah, N.A.: Significance of Reynolds number, lower and upper rotating disks on the dynamics of water conveying graphene and silver nanoparticles between rotating disks. Phys. Scr. 96(4), 045218 (2021)

    Article  Google Scholar 

  50. Abbas, N.; Nadeem, S.; Saleem, A.; Malik, M.Y.; Issakhov, A.; Alharbi, F.M.: Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder. Chin. J. Phys. 69, 109–117 (2021)

    Article  MathSciNet  Google Scholar 

  51. Zainal, N.A.; Nazar, R.; Naganthran, K.; Pop, I.: Stability analysis of MHD hybrid nanofluid flow over a stretching/shrinking sheet with quadratic velocity. Alex. Eng. J. 60(1), 915–926 (2021)

    Article  MATH  Google Scholar 

  52. Ali, A.; Bukhari, Z.; Shahzadi, G.; Abbas, Z.; Umar, M.: Numerical simulation of the thermally developed pulsatile flow of a hybrid nanofluid in a constricted channel. Energies 14(9), 2410 (2021)

    Article  Google Scholar 

  53. Ali, A.; Bukhari, Z.; Umar, M.; Ismail, M.A.; Abbas, Z.: Cu and Cu-SWCNT nanoparticles’ suspension in pulsatile casson fluid flow via darcy-forchheimer porous channel with compliant walls: a prospective model for blood flow in stenosed arteries. Int. J. Mol. Sci. 22(12), 6494 (2021)

    Article  Google Scholar 

  54. Hanif, H.; Khan, I.; Shafie, S.: Heat transfer exaggeration and entropy analysis in magneto-hybrid nanofluid flow over a vertical cone: a numerical study. J. Thermal Anal. Calorim. 141(5), 2001–2017 (2021)

    Article  Google Scholar 

  55. Song, Y.-Q.; Obideyi, B.D.; Shah, N.A.; Animasaun, I.L.; Mahrous, Y.M.; Chung, J.D.: Significance of haphazard motion and thermal migration of alumina and copper nanoparticles across the dynamics of water and ethylene glycol on a convectively heated surface. Case Stud. Thermal Eng. 26, 101050 (2021). https://doi.org/10.1016/j.csite.2021.101050

    Article  Google Scholar 

  56. Nehad, A.S.; Animasaun, I.L.; Wakif, A.; Koriko, O.K.; Sivaraj, R.; Adegbie, K.S.; Zahra, A.; Hanumesh, V.; Ijirimoye, A.F.; Prasad, K.V.: Significance of suction and dual stretching on the dynamics of various hybrid nanofluids: comparative analysis between type I and type II models. Phys. Scr. 95(9), 095205 (2020). https://doi.org/10.1088/1402-4896/aba8c6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Animasaun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajja, V.S., Gadamsetty, R., Muthu, P. et al. Significance of Lorentz Force and Viscous Dissipation on the Dynamics of Propylene Glycol: Water Subject to Joule Heating Conveying Paraffin Wax and Sand Nanoparticles Over an Object with a Variable Thickness. Arab J Sci Eng 47, 15505–15518 (2022). https://doi.org/10.1007/s13369-022-06658-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06658-z

Keywords

Navigation