Skip to main content

Advertisement

Log in

Effect of Waste Clay Brick on the Modulus of Elasticity, Drying Shrinkage and Microstructure of Metakaolin-Based Geopolymer Concrete

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study focuses on utilization of clay brick waste as constituents for metakaolin-based geopolymer concrete (MK-Gpc), and the evaluation of their effect on the modulus of elasticity, shrinkage behavior and microstructure feature. To conduct this experimental study, two groups of MK-Gpc mixtures made with varying contents and forms of brick wastes were prepared, tested and compared with control mix (zero waste content). In first group, clay brick powder was substituted at doses of 10%, 15% and 20% by weight of metakaolin, while the second group consisted of waste clay brick aggregate (BA) as a partial replacement of natural coarse aggregate (NCA) by volume level of 10%, 20% and 30%. It was found that static modulus of elasticity of control mix dropped up to 47% and 56% for specimens with 20%BP and 30%BA, respectively. Test results indicated that the usage of BP increases drying shrinkage of MK-Gpc at early age and tends to decline after 28-day curing. The incorporation of 20%BA showed an adverse effect on shrinkage at all ages while the inclusion of 10% and 30%BA improved the drying shrinkage. The scanning electron microscopy (SEM) images revealed various microstructure features that include porous, microcrack structure and interface bonding zone between geopolymers and recycled waste aggregate, which represent the key factors that are having effects on the MK-Gpc properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Assi, L.; Carter, K.; Deaver, E.E.; Anay, R.; Ziehl, P.: Sustainable concrete: building a greener future. J. Clean. Prod. 198, 1641–1651 (2018). https://doi.org/10.1016/j.jclepro.2018.07.123

    Article  Google Scholar 

  2. Maddalena, R.; Roberts, J.J.; Hamilton, A.: Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements. J. Clean. Prod. 186, 933–942 (2018). https://doi.org/10.1016/j.jclepro.2018.02.138

    Article  Google Scholar 

  3. Wang, B.; Yan, L.; Fu, Q.; Kasal, B.: A comprehensive review on recycled aggregate and recycled aggregate concrete. Resour. Conserv. Recycl. 171, 105565 (2021). https://doi.org/10.1016/j.resconrec.2021.105565

    Article  Google Scholar 

  4. Xie, T.; Visintin, P.; Zhao, X.; Gravina, R.: Mix design and mechanical properties of geopolymer and alkali activated concrete: review of the state-of-the-art and the development of a new unified approach. Constr. Build. Mater. 256, 119380 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119380

    Article  Google Scholar 

  5. Mohammed, A.A.; Ahmed, H.U.; Mosavi, A.: Survey of mechanical properties of geopolymer concrete: a comprehensive review and data analysis. Materials 14(16), 4690 (2021). https://doi.org/10.3390/ma14164690

    Article  Google Scholar 

  6. Lahoti, M.; Narang, P.; Tan, K.H.; Yang, E.H.: Mix design factors and strength prediction of metakaolin-based geopolymer. Ceram. Int. 43(14), 11433–11441 (2017). https://doi.org/10.1016/j.ceramint.2017.06.006

    Article  Google Scholar 

  7. Ma, C.K.; Awang, A.Z.; Omar, W.: Structural and material performance of geopolymer concrete: a review. Constr. Build. Mater. 186, 90–102 (2018). https://doi.org/10.1016/j.conbuildmat.2018.07.111

    Article  Google Scholar 

  8. Korniejenko, K.; Lin, W.T.; Šimonová, H.: Mechanical properties of short polymer fiber-reinforced geopolymer composites. J. Compos. Sci. 4(3), 128 (2020). https://doi.org/10.3390/jcs4030128

    Article  Google Scholar 

  9. Ahmed, M.F.: Utilization of Iraqi metakaolin in special types of concrete: a review based on national researches. J. Eng. 27(8), 80–98 (2021). https://doi.org/10.31026/j.eng.2021.08.06

    Article  Google Scholar 

  10. Marín-López, C.; Araiza, J.R.; Manzano-Ramírez, A.; Avalos, J.R.; Perez-Bueno, J.J.; Muñiz-Villareal, M.S.; Ventura-Ramos, E.; Vorobiev, Y.: Synthesis and characterization of a concrete based on metakaolin geopolymer. Inorg. Mater. 45(12), 1429–1432 (2009). https://doi.org/10.1134/S0020168509120231

    Article  Google Scholar 

  11. Pacheco-Torgal, F.; Moura, D.; Ding, Y.; Jalali, S.: Composition, strength and workability of alkali-activated metakaolin based mortars. Constr. Build. Mater. 25(9), 3732–3745 (2011). https://doi.org/10.1016/j.conbuildmat.2011.04.017

    Article  Google Scholar 

  12. Chen, L.; Wang, Z.; Wang, Y.; Feng, J.: Preparation and properties of alkali activated metakaolin-based geopolymer. Materials 9(9), 767 (2016). https://doi.org/10.3390/ma9090767

    Article  Google Scholar 

  13. Risdanareni, P.; Puspitasari, P.; Santoso, E.; Adi, E.P.: Mechanical and physical properties of metakaolin based geopolymer paste. In: MATEC Web of Conferences, Vol. 101, p. 01021. EDP Sciences (2017). https://doi.org/10.1051/matecconf/201710101021

  14. Jaya, N.A.; Yun-Ming, L.; Abdullah, M.M.; Cheng-Yong, H.; Hussin, K.: Effect of sodium hydroxide molarity on physical, mechanical and thermal conductivity of metakaolin geopolymers. In: IOP Conference Series: Materials Science and Engineering, vol. 343, no. 1, p. 012015. IOP Publishing (2018). https://doi.org/10.1088/1757-899X/343/1/012015

  15. Wong, C.L.; Mo, K.H.; Yap, S.P.; Alengaram, U.J.; Ling, T.C.: Potential use of brick waste as alternate concrete-making materials: a review. J. Clean. Prod. 195, 226–239 (2018). https://doi.org/10.1016/j.jclepro.2018.05.193

    Article  Google Scholar 

  16. Mahmoodi, O.; Siad, H.; Lachemi, M.; Dadsetan, S.; Sahmaran, M.: Optimization of brick waste-based geopolymer binders at ambient temperature and pre-targeted chemical parameters. J. Clean. Prod. 268, 122285 (2020). https://doi.org/10.1016/j.jclepro.2020.122285

    Article  Google Scholar 

  17. D’Angelo, G.; Fumo, M.; Merino, M.D.; Capasso, I.; Campanile, A.; Iucolano, F.; Caputo, D.; Liguori, B.: Crushed bricks: demolition waste as a sustainable raw material for geopolymers. Sustainability 13(14), 7572 (2021). https://doi.org/10.3390/su13147572

    Article  Google Scholar 

  18. Komnitsas, K.; Zaharaki, D.; Vlachou, A.; Bartzas, G.; Galetakis, M.: Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Adv. Powder Technol. 26(2), 368–376 (2015). https://doi.org/10.1016/j.apt.2014.11.012

    Article  Google Scholar 

  19. Tuyan, M.; Andiç-Çakir, Ö.; Ramyar, K.: Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Compos. B Eng. 135, 242–252 (2018). https://doi.org/10.1016/j.compositesb.2017.10.013

    Article  Google Scholar 

  20. Fořt, J.; Vejmelková, E.; Koňáková, D.; Alblová, N.; Čáchová, M.; Keppert, M.; Rovnaníková, P.; Černý, R.: Application of waste brick powder in alkali activated aluminosilicates: functional and environmental aspects. J. Clean. Prod. 194, 714–725 (2018). https://doi.org/10.1016/j.jclepro.2018.05.181

    Article  Google Scholar 

  21. Rovnaník, P.; Rovnanikova, P.; Vyšvařil, M.; Grzeszczyk, S.; Janowska-Renkas, E.: Rheological properties and microstructure of binary waste red brick powder/metakaolin geopolymer. Constr. Build. Mater. 188, 924–933 (2018). https://doi.org/10.1016/j.conbuildmat.2018.08.150

    Article  Google Scholar 

  22. Nuaklong, P.; Sata, V.; Chindaprasirt, P.: Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens. Constr. Build. Mater. 161, 365–373 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.152

    Article  Google Scholar 

  23. Panizza, M.; Natali, M.; Garbin, E.; Tamburini, S.; Secco, M.: Assessment of geopolymers with Construction and Demolition Waste (CDW) aggregates as a building material. Constr. Build. Mater. 181, 119–133 (2018). https://doi.org/10.1016/j.conbuildmat.2018.06.018

    Article  Google Scholar 

  24. dos Santos, A.C.; de Arruda, A.M.; da Silva, T.J.; Vitor, P.D.; Trautwein, L.M.: Influence of coarse aggregate on concrete’s elasticity modulus. Acta Sci. Technol. 39(1), 17–25 (2017). https://doi.org/10.4025/actascitechnol.v39i1.29873

    Article  Google Scholar 

  25. Jacintho, A.E.; Cavaliere, I.S.; Pimentel, L.L.; Forti, N.C.: Modulus and strength of concretes with alternative materials. Materials. 13(19), 4378 (2020). https://doi.org/10.3390/ma13194378

    Article  Google Scholar 

  26. Hashmi, A.F.; Shariq, M.; Baqi, A.: An investigation into age-dependent strength, elastic modulus and deflection of low calcium fly ash concrete for sustainable construction. Constr. Build. Mater. 283, 122772 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122772

    Article  Google Scholar 

  27. Alanazi, H.: Effect of aggregate types on the mechanical properties of traditional concrete and geopolymer concrete. Curr. Comput.-Aided Drug Des. 11(9), 1110 (2021). https://doi.org/10.3390/cryst11091110

    Article  Google Scholar 

  28. Mastali, M.; Kinnunen, P.; Dalvand, A.; Firouz, R.M.; Illikainen, M.: Drying shrinkage in alkali-activated binders—a critical review. Constr. Build. Mater. 190, 533–550 (2018). https://doi.org/10.1016/j.conbuildmat.2018.09.125

    Article  Google Scholar 

  29. Mushtaq, S.M.; Siddique, R.; Goyal, S.; Kaur, K.: Experimental studies and drying shrinkage prediction model for concrete containing waste foundry sand. Clean. Eng. Technol. 2, 100071 (2021). https://doi.org/10.1016/j.clet.2021.100071

    Article  Google Scholar 

  30. Yang, T.; Zhu, H.; Zhang, Z.: Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars. Constr. Build. Mater. 153, 284–293 (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.067

    Article  Google Scholar 

  31. Hawa, A.; Tonnayopas, D.; Prachasaree, W.: Performance evaluation and microstructure characterization of metakaolin-based geopolymer containing oil palm ash. Sci. World J. (2013). https://doi.org/10.1155/2013/857586

    Article  Google Scholar 

  32. Si, R.; Dai, Q.; Guo, S.; Wang, J.: Mechanical property, nanopore structure and drying shrinkage of metakaolin-based geopolymer with waste glass powder. J. Clean. Prod. 242, 118502 (2020). https://doi.org/10.1016/j.jclepro.2019.118502

    Article  Google Scholar 

  33. Sun, K.; Peng, X.; Chu, S.H.; Wang, S.; Zeng, L.; Ji, G.: Utilization of BOF steel slag aggregate in metakaolin-based geopolymer. Constr. Build. Mater. 300, 124024 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124024

    Article  Google Scholar 

  34. ASTM C618-17a: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, West Conshohocken (2017)

    Google Scholar 

  35. IS:1727-1967: Methods of test for pozzolanic materials (First Revision). Indian Standard; Sixth reprint October 1996

  36. ASTM C311/C311M: Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete. ASTM International, West Conshohocken (2013)

    Google Scholar 

  37. Iraqi Specification, IQ.S 45/1984: Aggregate from Natural Sources for Concrete. Central Organization for Standardization and Quality Control, Baghdad (1984)

    Google Scholar 

  38. Iraqi Specification, IQ.S 30/1981: Determination of Particle Size and Shape of Aggregates. Central Organization for Standardization and Quality Control, Baghdad (1981)

    Google Scholar 

  39. Iraqi Specification, IQ.S 31/1981: Determination of Density, Relative Density (Specific Gravity), Water Absorption and VOIDS for aggregates. Central Organization for Standardization and Quality Control, Baghdad (1981)

    Google Scholar 

  40. ASTM C494/C 494M-99a: Standard Specification for Chemical Admixtures for Concrete. ASTM International, West Conshohocken (2013)

    Google Scholar 

  41. Ahmed, M.F.; Khalil, W.I.; Frayyeh, Q.J.: Blended metakaolin and waste clay brick powder as source material in sustainable geopolymer concrete. In: ISEC 2019—10th International Structural Engineering and Construction Conference, pp. 1–6 (2019). https://doi.org/10.14455/isec.res.2019.31

  42. Khalil, W.I.; Frayyeh, Q.J., Ahmed, M.F.: Evaluation of sustainable metakaolin-geopolymer concrete with crushed waste clay brick. In: IOP Conference Series: Materials Science and Engineering, Vol. 518, No. 2, p. 022053. IOP Publishing (2019). https://doi.org/10.1088/1757-899X/518/2/022053

  43. ASTM C469/C496M-14: Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM International, West Conshohocken (2014)

    Google Scholar 

  44. ASTM C215-14: Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens. ASTM International, West Conshohocken (2014)

    Google Scholar 

  45. Zhang, H.; Wang, Y.; Lehman, D.E.; Geng, Y.; Kuder, K.: Time-dependent drying shrinkage model for concrete with coarse and fine recycled aggregate. Cement Concr. Compos. 105, 103426 (2020). https://doi.org/10.1016/j.cemconcomp.2019.103426

    Article  Google Scholar 

  46. Siddique, R.; Khan, M.I.: Supplementary Cementing Materials. Springer, Berlin (2011)

    Book  Google Scholar 

  47. Hasan, Z.A.: Manufacturing and studying properties of geopolymer concrete produced by using local materials. Ph.D. dissertation. University of Technology, Iraq (2016)

  48. Mehta, P.K.; Monteiro, P.J.: Concrete: Microstructure, Properties, and Materials. McGraw-Hill Education, New York (2014)

    Google Scholar 

  49. Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A.A.: Engineering properties of alkali-activated natural pozzolan concrete. ACI Mater. J. 108(1), 64–72 (2011)

    Google Scholar 

  50. Debieb, F.; Kenai, S.: The use of coarse and fine crushed bricks as aggregate in concrete. Constr. Build. Mater. 22(5), 886–893 (2008). https://doi.org/10.1016/j.conbuildmat.2006.12.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood F. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M.F., Khalil, W.I. & Frayyeh, Q.J. Effect of Waste Clay Brick on the Modulus of Elasticity, Drying Shrinkage and Microstructure of Metakaolin-Based Geopolymer Concrete. Arab J Sci Eng 47, 12671–12683 (2022). https://doi.org/10.1007/s13369-022-06611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06611-0

Keywords

Navigation