Skip to main content
Log in

Predictive Performances of Ensemble Machine Learning Algorithms in Landslide Susceptibility Mapping Using Random Forest, Extreme Gradient Boosting (XGBoost) and Natural Gradient Boosting (NGBoost)

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Across the globe, landslides have been recognized as one of the most detrimental geological calamities, especially in hilly terrains. However, the correct determination of landslide-prone fields remained a challenging task due to the nonlinear, complex, and inconsistent nature of landslides. Therefore, it is essential to apply methods with superior capabilities in dealing with real-world problems for properly delineating potential landslide zones. Recently, ensemble learning techniques have been drawn intense interest in landslide susceptibility mapping studies due to their distinct advantages. This present work intended to propose natural gradient boosting (NGBoost), a novel member of the ensemble learning family, for modeling landslide susceptibility for Macka County of Trabzon province, Turkey. The predictive performance of NGBoost was compared to ensemble-based machine learning methods, namely random forest (RF) and XGBoost using five accuracy metrics including overall accuracy (OA), F1 score, Kappa coefficient, area under curve (AUC) value, and root-mean-square error to evaluate its competence and robustness. Besides, SHAP based on the game theory approach was implemented to interpret the influences of the predisposing factors on the produced model. Results indicated that the NGBoost method utilized for landslide susceptibility mapping problem for the first time had the greatest predictive ability (AUC = 0.898), followed by XGBoost (AUC = 0.871) and RF (AUC = 0.863), and outperformed the XGBoost and RF by approximately 6% in terms of OA. McNemar’s statistical significance test results also confirmed the superiority of the proposed NGBoost method over the RF and XGBoost algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Schuster, R.L.: Socioeconomic significance of landslides. Spec. Rep. Natl. Res. Counc. Transp. Res. Board. 247, 12–35 (1996)

    Google Scholar 

  2. Dilley, M.; Chen, R.S.; Deichmann, U.; Lerner-Lam, A.; Arnold, M.; Agwe, J.; Buys, P.; Kjekstad, O.; Lyon, B.; Yetman, G.: Natural Disaster Hotspots: A Global Risk Analysis. World Bank Publications, Washington, DC (2005)

    Book  Google Scholar 

  3. Safaei, M.; Omar, H.; Huat, B.K.; Yousof, Z.B.M.; Ghiasi, V.: Deterministic rainfall induced landslide approaches, advantage and limitation. Electron. J. Geotech. Eng. 16, 1619–1650 (2011)

    Google Scholar 

  4. Kjekstad, O.; Highland, L.: Economic and social impacts of landslides. In: Zhou, L.; Ooi, B.; Meng, X. (Eds.) Landslides: Disaster Risk Reduction, pp. 573–587. Springer, Berlin (2009)

    Chapter  Google Scholar 

  5. Ildir, B.: Turkiyede heyelanlarin dagilimi ve afetler yasasi ile ilgili uygulamalar (Landslide distribution in Turkey and applications based on disasters regulation). In: Onalp, A. (ed.) Proceedings of 2nd National Landslide Symposium Turkey, Sakarya University. pp. 1–9 (1995)

  6. Hasekioğulları, G.D.; Ercanoglu, M.: A new approach to use AHP in landslide susceptibility mapping: A case study at Yenice (Karabuk, NW Turkey). Nat. Hazards. 63, 1157–1179 (2012). https://doi.org/10.1007/s11069-012-0218-1

    Article  Google Scholar 

  7. Görüm, T.; Fidan, S.: Spatiotemporal variations of fatal landslides in Turkey. Landslides 18, 1691–1705 (2021). https://doi.org/10.1007/s10346-020-01580-7

    Article  Google Scholar 

  8. Yalcin, A.: Environmental impacts of landslides: a case study from East Black Sea region, Turkey. Environ. Eng. Sci. 24, 821–833 (2007). https://doi.org/10.1089/ees.2006.0161

    Article  MathSciNet  Google Scholar 

  9. Akgün, A.; Bulut, F.: GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environ. Geol. 51, 1377–1387 (2007). https://doi.org/10.1007/s00254-006-0435-6

    Article  Google Scholar 

  10. Yalcin, A.: A geotechnical study on the landslides in the Trabzon Province, NE, Turkey. Appl. Clay Sci. 52, 11–19 (2011). https://doi.org/10.1016/j.clay.2011.01.015

    Article  Google Scholar 

  11. Kavzoglu, T.; Kutlug Sahin, E.; Colkesen, I.: Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm. Eng. Geol. 192, 101–112 (2015). https://doi.org/10.1016/j.enggeo.2015.04.004

    Article  Google Scholar 

  12. Colkesen, I.; Sahin, E.K.; Kavzoglu, T.: Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression. J. African Earth Sci. 118, 53–64 (2016). https://doi.org/10.1016/j.jafrearsci.2016.02.019

    Article  Google Scholar 

  13. Kutlug Sahin, E.; Ipbuker, C.; Kavzoglu, T.: Investigation of automatic feature weighting methods (Fisher, Chi-square and Relief-F) for landslide susceptibility mapping. Geocarto Int. 32, 956–977 (2017). https://doi.org/10.1080/10106049.2016.1170892

    Article  Google Scholar 

  14. Akinci, H.; Kilicoglu, C.; Dogan, S.: Random forest-based landslide susceptibility mapping in coastal regions of artvin, Turkey. ISPRS Int. J. Geo-Inf. 9, 4993 (2020). https://doi.org/10.3390/ijgi9090553

    Article  Google Scholar 

  15. Sezer, E.A.; Nefeslioglu, H.A.; Osna, T.: An expert-based landslide susceptibility mapping (LSM) module developed for Netcad Architect Software. Comput. Geosci. 98, 26–37 (2017). https://doi.org/10.1016/j.cageo.2016.10.001

    Article  Google Scholar 

  16. Akgun, A.; Dag, S.; Bulut, F.: Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ. Geol. 54, 1127–1143 (2008). https://doi.org/10.1007/s00254-007-0882-8

    Article  Google Scholar 

  17. Ercanoglu, M.; Gokceoglu, C.: Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng. Geol. 75, 229–250 (2004). https://doi.org/10.1016/j.enggeo.2004.06.001

    Article  Google Scholar 

  18. Kavzoglu, T.; Sahin, E.K.; Colkesen, I.: Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11, 425–439 (2013). https://doi.org/10.1007/s10346-013-0391-7

    Article  Google Scholar 

  19. Gokceoglu, C.; Sonmez, H.; Nefeslioglu, H.A.; Duman, T.Y.; Can, T.: The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Eng. Geol. 81, 65–83 (2005). https://doi.org/10.1016/j.enggeo.2005.07.011

    Article  Google Scholar 

  20. Pradhan, B.; Jebur, M.N.: Spatial prediction of landslide-prone areas through k-nearest neighbor algorithm and logistic regression model using high resolution airborne laser scanning data. In: Pradhan, B. (Ed.) Laser Scanning Applications in Landslide Assessment, pp. 151–165. Springer (2017)

    Chapter  Google Scholar 

  21. Chen, L.C.; Liu, Y.C.; Chan, K.C.: Integrated community-based disaster management program in taiwan: a case study of shang-an village. Nat. Hazards. 37, 209–223 (2006). https://doi.org/10.1007/s11069-005-4669-5

    Article  Google Scholar 

  22. Regmi, N.R.; Giardino, J.R.; Vitek, J.D.: Assessing susceptibility to landslides: using models to understand observed changes in slopes. Geomorphology 122, 25–38 (2010). https://doi.org/10.1016/j.geomorph.2010.05.009

    Article  Google Scholar 

  23. Dai, F.C.; Lee, C.F.; Ngai, Y.Y.: Landslide risk assessment and management: an overview. Eng. Geol. 64, 65–87 (2002). https://doi.org/10.1016/S0013-7952(01)00093-X

    Article  Google Scholar 

  24. Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P.: Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31, 181–216 (1999). https://doi.org/10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  25. Pradhan, B.: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput. Geosci. 51, 350–365 (2013). https://doi.org/10.1016/j.cageo.2012.08.023

    Article  Google Scholar 

  26. Kavzoglu, T.; Kutlug Sahin, E.; Colkesen, I.: An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district. Nat. Hazards. 76, 471–496 (2015). https://doi.org/10.1007/s11069-014-1506-8

    Article  Google Scholar 

  27. Lee, S.; Sambath, T.: Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ. Geol. 50, 847–855 (2006). https://doi.org/10.1007/s00254-006-0256-7

    Article  Google Scholar 

  28. Yilmaz, I.: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Comput. Geosci. 35, 1125–1138 (2009). https://doi.org/10.1016/j.cageo.2008.08.007

    Article  Google Scholar 

  29. Yao, X.; Tham, L.G.; Dai, F.C.: Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes of Hong Kong, China. Geomorphology 101, 572–582 (2008). https://doi.org/10.1016/j.geomorph.2008.02.011

    Article  Google Scholar 

  30. Kalantar, B.; Pradhan, B.; Amir Naghibi, S.; Motevalli, A.; Mansor, S.: Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geom. Nat. Hazards Risk. 9, 49–69 (2018). https://doi.org/10.1080/19475705.2017.1407368

    Article  Google Scholar 

  31. Tien Bui, D.; Pradhan, B.; Lofman, O.; Revhaug, I.: Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and naïve bayes models. Math. Probl. Eng. (2012). https://doi.org/10.1155/2012/974638

    Article  Google Scholar 

  32. Pourghasemi, H.R.; Rahmati, O.: Prediction of the landslide susceptibility: Which algorithm, which precision? CATENA 162, 177–192 (2018). https://doi.org/10.1016/j.catena.2017.11.022

    Article  Google Scholar 

  33. Gómez, H.; Kavzoglu, T.: Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin. Venezuela. Eng. Geol. 1–2, 1–27 (2005). https://doi.org/10.1016/j.enggeo.2004.10.004

    Google Scholar 

  34. Lee, S.; Ryu, J.H.; Kim, I.S.: Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: Case study of Youngin, Korea. Landslides 4, 327–338 (2007). https://doi.org/10.1007/s10346-007-0088-x

    Article  Google Scholar 

  35. Kavzoglu, T.; Teke, A.; Yilmaz, E.O.: Shared blocks-based ensemble deep learning for shallow landslide susceptibility mapping. Remote Sens. 13, 4776 (2021). https://doi.org/10.3390/rs13234776

    Article  Google Scholar 

  36. Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q.: A survey on ensemble learning. Front. Comput. Sci. 14, 241–258 (2020). https://doi.org/10.1007/s11704-019-8208-z

    Article  Google Scholar 

  37. Gao, X.; Shan, C.; Hu, C.; Niu, Z.; Liu, Z.: An adaptive ensemble machine learning model for intrusion detection. IEEE Access. 7, 82512–82521 (2019). https://doi.org/10.1109/ACCESS.2019.2923640

    Article  Google Scholar 

  38. Sagi, O.; Rokach, L.: Ensemble learning: a survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8, e1249, 1–18 (2018). https://doi.org/10.1002/widm.1249

    Article  Google Scholar 

  39. Fang, Z.; Wang, Y.; Peng, L.; Hong, H.: A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping. Int. J. Geogr. Inf. Sci. 35, 321–347 (2021). https://doi.org/10.1080/13658816.2020.1808897

    Article  Google Scholar 

  40. Pham, B.T.; Nguyen-Thoi, T.; Qi, C.; Phong, T.V.; Dou, J.; Ho, L.S.; Le, H.V.; Prakash, I.: Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping. CATENA 195, 104805 (2020). https://doi.org/10.1016/j.catena.2020.104805

    Article  Google Scholar 

  41. MTA Yerbilimleri Harita Goruntuleyici ve Cizim Editoru, Available online: http://yerbilimleri.mta.gov.tr/. Accessed 3 Mar 2021

  42. Tsangaratos, P.; Ilia, I.; Hong, H.; Chen, W.; Xu, C.: Applying Information Theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China. Landslides 14, 1091–1111 (2017). https://doi.org/10.1007/s10346-016-0769-4

    Article  Google Scholar 

  43. Dou, J.; Yunus, A.P.; Tien Bui, D.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.W.; Khosravi, K.; Yang, Y.; Pham, B.T.: Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci. Total Environ. 662, 332–346 (2019). https://doi.org/10.1016/j.scitotenv.2019.01.221

    Article  Google Scholar 

  44. Can, R.; Kocaman, S.; Gokceoglu, C.: A comprehensive assessment of XGBoost algorithm for landslide susceptibility mapping in the upper basin of Ataturk dam, Turkey. Appl. Sci. 11, 4993 (2021). https://doi.org/10.3390/app11114993

    Article  Google Scholar 

  45. Lima, P.; Steger, S.; Glade, T.: Counteracting flawed landslide data in statistically based landslide susceptibility modelling for very large areas: a national-scale assessment for Austria. Landslides 18, 3531–3546 (2021). https://doi.org/10.1007/s10346-021-01693-7

    Article  Google Scholar 

  46. Yanar, T.; Kocaman, S.; Gokceoglu, C.: Use of Mamdani fuzzy algorithm for multi-hazard susceptibility assessment in a developing urban settlement (Mamak, Ankara, Turkey). ISPRS Int. J. Geo-Inf. 9, 114 (2020). https://doi.org/10.3390/ijgi9020114

    Article  Google Scholar 

  47. Kocaman, S.; Gokceoglu, C.: Possible contributions of citizen science for landslide hazard assessment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 42, 295–300 (2018)

    Article  Google Scholar 

  48. Kavzoglu, T.; Colkesen, I.; Sahin, E.K.: Machine learning techniques in landslide susceptibility mapping: a survey and a case study. Adv. Nat. Technol. Hazards Res. 50, 283–301 (2019). https://doi.org/10.1007/978-3-319-77377-3_13

    Article  Google Scholar 

  49. Yalcin, A.; Reis, S.; Aydinoglu, A.C.; Yomralioglu, T.: A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA (2011). https://doi.org/10.1016/j.catena.2011.01.014

    Article  Google Scholar 

  50. Peduzzi, P.: Landslides and vegetation cover in the 2005 North Pakistan earthquake: a GIS and statistical quantitative approach. Nat. Hazards Earth Syst. Sci. 10, 623–640 (2010). https://doi.org/10.5194/nhess-10-623-2010

    Article  Google Scholar 

  51. Viet, T.T.; Lee, G.; Kim, M.: Shallow landslide assessment considering the ınfluence of vegetation cover. J. Korean Geoenviron. Soc. 17, 17–31 (2016). https://doi.org/10.14481/jkges.2016.17.4.17

    Article  Google Scholar 

  52. Nefeslioglu, H.A.; Duman, T.Y.; Durmaz, S.: Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology 94, 401–418 (2008). https://doi.org/10.1016/j.geomorph.2006.10.036

    Article  Google Scholar 

  53. Saleem, N.; Enamul Huq, M.; Twumasi, N.Y.D.; Javed, A.; Sajjad, A.: Parameters derived from and/or used with digital elevation models (DEMs) for landslide susceptibility mapping and landslide risk assessment: a review. ISPRS Int. J. Geo-Inf. 8, 545 (2019). https://doi.org/10.3390/ijgi8120545

    Article  Google Scholar 

  54. Pachauri, A.K.; Gupta, P.V.; Chander, R.: Landslide zoning in a part of the Garhwal Himalayas. Environ. Geol. 36, 325–334 (1998). https://doi.org/10.1007/s002540050348

    Article  Google Scholar 

  55. Tagil, S.; Jeff, J.: GIS-based automated landform classification and topographic, landcover and geologic attributes of landforms around the Yazoren Polje, Turkey. J. Appl. Sci. 8, 910–921 (2008)

    Article  Google Scholar 

  56. Quinlan, J.T.: C4.5: Programs for Machine Learning. Elsevier, 2014

  57. Park, S.; Kim, J.: Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance. Appl. Sci. (2019). https://doi.org/10.3390/app9050942

    Article  Google Scholar 

  58. Pham, B.T.; Bui, D.T.; Dholakia, M.B.; Prakash, I.; Pham, H.V.; Mehmood, K.; Le, H.Q.: A novel ensemble classifier of rotation forest and Naïve Bayer for landslide susceptibility assessment at the Luc Yen district, Yen Bai Province (Viet Nam) using GIS. Geom. Nat. Hazards Risk. 8, 649–671 (2017). https://doi.org/10.1080/19475705.2016.1255667

    Article  Google Scholar 

  59. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  60. Sahin, E.K.; Colkesen, I.; Kavzoglu, T.: A comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mapping. Geocarto Int. 35, 341–363 (2020). https://doi.org/10.1080/10106049.2018.1516248

    Article  Google Scholar 

  61. Kocaman, S.; Tavus, B.; Nefeslioglu, H.A.; Karakas, G.; Gokceoglu, C.: Evaluation of floods and landslides triggered by a meteorological catastrophe (Ordu, Turkey, August, 2018) using optical and radar data. Geofluids 2020, 8830661 (2020). https://doi.org/10.1155/2020/8830661

    Article  Google Scholar 

  62. Kavzoglu, T.: Object-oriented random forest for high resolution land cover mapping using quickbird-2 ımagery. In: Samui, P.; Roy, S.S.; Balas, V.E. (Eds.) Handbook of Neural Computation, pp. 607–619. Elsevier Inc. (2017)

    Chapter  Google Scholar 

  63. Chen, T.; Guestrin, C.: XGBoost: A Scalable Tree Boosting System. Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, San Fr. CA, USA. 13–17 Augu, 785–794 (2016)

  64. Sahin, E.K.: Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping. Geocarto Int. (2020). https://doi.org/10.1080/10106049.2020.1831623

    Article  Google Scholar 

  65. Sahin, E.K.: Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. SN Appl. Sci. 2, 1–17 (2020). https://doi.org/10.1007/s42452-020-3060-1

    Article  Google Scholar 

  66. Duan, T.; Avati, A.; Ding, D.Y.; Basu, S.; Ng, A.Y.; Schuler, A.: NGBoost: Natural gradient boosting for probabilistic prediction. In: Proceedings of the 37th International Conference on Machine Learning, Online, PMLR 119, 2020 (2019)

  67. Chakraborty, D.; Elhegazy, H.; Elzarka, H.; Gutierrez, L.: A novel construction cost prediction model using hybrid natural and light gradient boosting. Adv. Eng. Inform. 46, 101201 (2020). https://doi.org/10.1016/j.aei.2020.101201

    Article  Google Scholar 

  68. Peng, T.; Zhi, X.; Ji, Y.; Ji, L.; Tian, Y.: Prediction skill of extended range 2-m maximum air temperature probabilistic forecasts using machine learning post-processing methods. Atmosphere (Basel). 11, 1–17 (2020). https://doi.org/10.3390/ATMOS11080823

    Article  Google Scholar 

  69. Dutta, S.: Revealing brain tumor using cross-validated ngboost classifier. Int. J. Mach. Learn. Netw. Collab. Eng. 4, 12–20 (2020). https://doi.org/10.30991/ijmlnce.2020v04i01.002

    Article  Google Scholar 

  70. Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I.: Explainable AI for trees: From local explanations to global understanding. https://arxiv.org/abs/1905, 1–72 (2019)

  71. Lundberg, S.M.; Lee, S.I.: A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 4766–4775 (2017)

  72. Štrumbelj, E.; Kononenko, I.: Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 41, 647–665 (2014)

    Article  Google Scholar 

  73. Menard, S.: Applied Logistic Regression Analysis: Sage University Series on Quantitative Applications in the Social Sciences. Sage Publication, Thousand Oaks (2002)

    Book  Google Scholar 

  74. Park, S.; Choi, C.; Kim, B.; Kim, J.: Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ. Earth Sci. 68, 1443–1464 (2013). https://doi.org/10.1007/s12665-012-1842-5

    Article  Google Scholar 

  75. Hong, H.; Liu, J.; Zhu, A.X.: Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble. Sci. Total Environ. 718, 137231 (2020). https://doi.org/10.1016/j.scitotenv.2020.137231

    Article  Google Scholar 

  76. Wang, Y.; Fang, Z.; Wang, M.; Peng, L.; Hong, H.: Comparative study of landslide susceptibility mapping with different recurrent neural networks. Comput. Geosci. 138, 104445 (2020). https://doi.org/10.1016/j.cageo.2020.104445

    Article  Google Scholar 

  77. Akgun, A.; Sezer, E.A.; Nefeslioglu, H.A.; Gokceoglu, C.; Pradhan, B.: An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Comput. Geosci. 38, 23–34 (2012). https://doi.org/10.1016/j.cageo.2011.04.012

    Article  Google Scholar 

  78. Ayalew, L.; Yamagishi, H.: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65, 15–31 (2005). https://doi.org/10.1016/j.geomorph.2004.06.010

    Article  Google Scholar 

  79. Tsangaratos, P.; Ilia, I.: Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size. CATENA 145, 164–179 (2016). https://doi.org/10.1016/j.catena.2016.06.004

    Article  Google Scholar 

  80. Kalantar, B.; Ueda, N.; Saeidi, V.; Ahmadi, K.; Halin, A.A.; Shabani, F.: Landslide susceptibility mapping: machine and ensemble learning based on remote sensing big data. Remote Sens. 12, 1–23 (2020). https://doi.org/10.3390/rs12111737

    Article  Google Scholar 

  81. Hu, X.; Mei, H.; Zhang, H.; Li, Y.; Li, M.: Performance evaluation of ensemble learning techniques for landslide susceptibility mapping at the Jinping county, Southwest China. Nat. Hazards. 105, 1663–1689 (2021). https://doi.org/10.1007/s11069-020-04371-4

    Article  Google Scholar 

  82. Arabameri, A.; Chandra Pal, S.; Rezaie, F.; Chakrabortty, R.; Saha, A.; Blaschke, T.; Di Napoli, M.; Ghorbanzadeh, O.; Thi Ngo, P.T.: Decision tree based ensemble machine learning approaches for landslide susceptibility mapping. Geocarto Int. (2021). https://doi.org/10.1080/10106049.2021.1892210

    Article  Google Scholar 

  83. Daǧ, S.; Bulut, F.: An example for preparation of GIS-based landslide susceptibility maps: Çayeli (Rize, NE Türkiye). J. Geol. Eng. 36, 35–62 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taskin Kavzoglu.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavzoglu, T., Teke, A. Predictive Performances of Ensemble Machine Learning Algorithms in Landslide Susceptibility Mapping Using Random Forest, Extreme Gradient Boosting (XGBoost) and Natural Gradient Boosting (NGBoost). Arab J Sci Eng 47, 7367–7385 (2022). https://doi.org/10.1007/s13369-022-06560-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06560-8

Keywords

Navigation