Skip to main content

Advertisement

Log in

Surface Wind Pressure Distribution of Molten-Salt Power Tower by CFD Analysis

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Molten-salt towers can help society archive the sustainable development goals and allow more older, dirtier fossil fuel plants to retire. The distribution of surface wind pressure on molten-salt power should be carefully considered to provide a guidance to structural designers. In this paper, the numerical wind tunnel simulation of the molten-salt power tower was performed by using CFD technology. The accuracy of the application of CFD technology is verified based on the CAARC standard high-rise building model. The parameters considered in the validation analysis are computational domain size, mesh generation method, turbulence model, and boundary conditions. Then CFD analysis was performed to investigate the wind velocity, streamline, and pressure distribution of the molten-salt tower. In addition, the average wind pressure coefficients of the tower under various basic wind pressures and geometric sizes of the receivers are discussed. It indicted variations in the basic wind pressures and the receiver diameters have a clear effect on the mutations of the average coefficients on the vertical and horizontal lines, while the changes of the receiver heights have little influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aljaerani, H.A.; Samykano, M.; Pandey, A.K., et al.: Thermophysical properties and corrosivity improvement of molten salts by use of nanoparticles for concentrated solar power applications: a critical review. J. Molec. Liq. 314(15), 113807 (2020)

    Article  Google Scholar 

  2. Yu, Q.; Fu, P.; Yang, Y., et al.: Modeling and parametric study of molten salt receiver of concentrating solar power tower plant. Energy 2020, 117505 (2020)

    Article  Google Scholar 

  3. Rodríguez-Sanchez, M.R.; Sánchez-González, A.; Santana, D.: Field-receiver model validation against solar two tests. Renew. Sustain. Energy Rev. 110, 43–52 (2019)

    Article  Google Scholar 

  4. Holmes, J.D.: Wind Loading of Structures, 3rd edn. CRC Press, Boca Raton (2017)

    Google Scholar 

  5. Li, S.Y.; Liu, M.; Li, H.X., et al.: Effects of structural damping on wind-induced responses of a 243-meter-high solar tower based on a novel elastic test model. J. Wind Eng. Ind. Aerodyn. 172, 1–11 (2018)

    Article  Google Scholar 

  6. ACI 307-08. Code requirements for reinforced concrete chimneys and commentary. American Concrete Institute, Farmington Hills, 2008.

  7. CICIND. Model code for concrete chimneys—Part A: the shell (commentary) [S]. International Committee on Industrial Chimneys, Switzerland, 2001

  8. GB 50051-2013.: Code for design of chimneys. China Planning Press, Beijing (in Chinese), 2013

  9. Batham, J.P.: Wind tunnel tests on scale models of a large power station chimney. J. Wind Eng. Ind. Aerodyn. 18(1), 75–90 (1985)

    Article  Google Scholar 

  10. Tamura, Y.; Nishimura, I.: Elastic model of reinforced concrete chimney for wind tunnel testing. J. Wind Eng. Ind. Aerodyn. 33, 231–236 (1990)

    Article  Google Scholar 

  11. Van Koten, H.: Wind induced vibrations of chimneys: the rules of the CICIND code for steel chimneys. Eng. Struct. 6(4), 350–356 (1984)

    Article  Google Scholar 

  12. Verboom, G.K.; van Koten, H.: Vortex excitation: three design rules tested on 13 industrial chimneys. J. Wind Eng. Ind. Aerodyn. 98(3), 145–154 (2010)

    Article  Google Scholar 

  13. Waldeck, J.L.: The measured and predicted response of a 300 m concrete chimney. J. Wind Eng. Ind. Aerodyn. 41, 229–240 (1992)

    Article  Google Scholar 

  14. Lupi, F.; Niemann, H.; Höffer, R.: A novel spectral method for cross-wind vibrations: Application to 27 full-scale chimneys. J. Wind Eng. Ind. Aerodyn. 171, 353–365 (2017)

    Article  Google Scholar 

  15. Liang, S.G.; Yang, W.; Wang, L.: Wind-induced responses of a tall chimney by aeroelastic wind tunnel test using a continuous model. Eng. Struct. 176, 871–880 (2018)

    Article  Google Scholar 

  16. Mohsin, K.M.: CFD simulation of wind effects on industrial RCC chimney. Int. J. Civil Eng. Technol. 8(1), 1008–1020 (2017)

    Google Scholar 

  17. Kolb, G.J.: An evaluation of possible next-generation high temperature molten-salt power towers. SANDIA Report SAND2011-9320, Sandia National Laboratories, 2011

  18. Peterseim, J.H.; White, S.; Hellwig, U.: Novel solar tower structure to lower plant cost and construction risk. In: Solarpaces: international conference on concentrating solar power and chemical energy systems. AIP Publishing LLC, 2016

  19. Fouad, N.S.; Mahmoud, G.H.; Nasr, N.E.: Comparative study of international codes wind loads and CFD results for low rise buildings. Alex. Eng. J. 57, 3623–3639 (2018)

    Article  Google Scholar 

  20. Su, N.; Peng, S.T.; Hong, N.N.; Zhang, J.L.: Experimental and numerical evaluation of wind-driven natural ventilation and dust suppression effects of coal sheds with porous gables. Build. Environ. 177, 106855 (2020)

    Article  Google Scholar 

  21. Lal, S.; Kaushik, S.C.; Hans, R.: Experimental investigation and CFD simulation studies of a laboratory scale solar chimney for power generation[J]. Sustainable Energy Technol. Assess. 13, 13–22 (2016)

    Article  Google Scholar 

  22. Burton, T.; Jenkins, N.; Sharpe, D., et al.: Wind Energy Handbook. John Wiley & Sons, UK (2011)

    Book  Google Scholar 

  23. Shourangiz-Haghighi, A.; Haghnegahdar, M.A.; Wang, L., et al.: State of the art in the optimisation of wind turbine performance using CFD. Archiv. Comput. Methods Eng. 27, 413–431 (2020)

    Article  Google Scholar 

  24. Badshah, M.; Badshah, S.; VanZwieten, J., et al.: Coupled fluid-structure interaction modelling of loads variation and fatigue life of a full-scale tidal turbine under the effect of velocity profile. Energies 12, 2217 (2019)

    Article  Google Scholar 

  25. Belver, A.V.; Ibán, A.L.; Lavín Martín, C.E.: Coupling between structural and fluid dynamic problems applied to vortex shedding in a 90 m steel chimney. J. Wind Eng. Ind. Aerodyn. 100(1), 30–37 (2012)

    Article  Google Scholar 

  26. Meng, F.Q.; He, B.J.; Zhu, J., et al.: Sensitivity analysis of wind pressure coefficients on CAARC standard tall buildings in CFD simulations. J Build Eng 16, 146–158 (2018)

    Article  Google Scholar 

  27. ANSYS.: ANSYS® Fluent theory guide, release 17.2. ANSYS, Inc.; 2016

  28. GB 50009-2012.: Load code for the design of building structures. China Architecture & Building Press, Beijing, 2010

  29. Saydam, A.Z.; Taylan, M.: Evaluation of wind loads on ships by CFD analysis. Ocean Eng. 158, 54–63 (2018)

    Article  Google Scholar 

  30. Rezaeiha, A.; Montazeri, H.; Blocken, B.: On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy 180, 838–857 (2019)

    Article  Google Scholar 

  31. Huang, P.; Gu, M.; Quan, Y.: Wind tunnel test research on CAARC standard tall building model. Chin. Quart. Mech. 29(4), 627–633 (2008) (in Chinese)

    Google Scholar 

  32. Ozmen, Y.; Baydar, E.; Beeck, J.V.: Wind flow over the low-rise building models with gabled roofs having different pitch angles. Build. Environ. 95, 63–74 (2015)

    Article  Google Scholar 

  33. Zhao, D.X.; He, B.J.: Effects of architectural shapes on surface wind pressure distribution: case studies of oval-shaped tall buildings. J. Build. Eng. 12, 219–228 (2017)

    Article  Google Scholar 

  34. Lateb, M.; Masson, C.; Stathopoulos, T., et al.: Comparison of various types of k–ε models for pollutant emissions around a two-building configuration. J. Wind Eng. Ind. Aerodyn. 115, 9–21 (2013)

    Article  Google Scholar 

  35. GB 50010-2010.: Code for design of concrete structures. China Architecture & Building Press, China, (in Chinese), 2010

  36. Tamura, Y.; Ohkuma, T.; Okada, H., et al.: Wind loading standards and design criteria in Japan. J. Wind Eng. Ind. Aerodyn. 83(1), 555–566 (1999)

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (11902161) and Nanjing Building System Project of China (Ks1717).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Wang, Z., Feng, J. et al. Surface Wind Pressure Distribution of Molten-Salt Power Tower by CFD Analysis. Arab J Sci Eng 47, 12497–12507 (2022). https://doi.org/10.1007/s13369-021-06501-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06501-x

Keywords

Navigation