Skip to main content
Log in

Individual and Competitive Adsorption of Negatively Charged Acid Blue 25 and Acid Red 1 onto Raw Indonesian Kaolin Clay

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Removal of negatively charged acid blue 25 (AB25) and acid red 1 (AR1) from their aqueous single and binary solute solutions by adsorption onto raw Indonesian kaolin was investigated. The effect of contact time, initial concentration, temperature, and the molar ratio of AB25 and AR1 in batch adsorption mode was determined. It was found that the individual and co-adsorption of AB25 and AR1 followed pseudo-second-order kinetics with mass transport being a combination of intraparticle and film diffusion. The adsorption isotherm data were consistent with the Langmuir model, implying that the adsorption of the synthetic dyes occurs on a homogeneous monolayer of the basal surfaces of kaolinite particles. Thermodynamic parameters suggested that the adsorption is spontaneous and exothermic. The maximum capacity of the co-adsorption of AB25 and AR1 was 9.02 and 7.67 mg g−1 lower compared to their individual adsorption (16.5 and 12.8 mg g−1, respectively). This confirms that adsorption of the two anionic synthetic dyes is competitive during co-adsorption. This competitive effect is important to consider in the simultaneous removal of multiple synthetic dyes from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Drumond Chequer, F.M.; de Oliveira, G.A.R.; Anastacio Ferraz, E.R.; Carvalho, J.; Boldrin Zanoni, M.V.; de Oliveir, D.P.: Textile dyes: dyeing process and environmental impact. In: Eco-Friendly Textile Dyeing and Finishing. IntechOpen: London, UK, pp. 151–176 (2013)

    Google Scholar 

  2. Křížová, H.: Natural dyes: their past, present, future and sustainability. Recent Dev. Fibrous Mater. Sci. 12, 59–71 (2015)

    Google Scholar 

  3. Chiu, Y.H.; Chang, T.F.M.; Chen, C.Y.; Sone, M.; Hsu, Y.J.: Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 9, 430 (2019)

    Article  Google Scholar 

  4. Popli, S.; Patel, U.D.: Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: a review. Int. J. Environ. Sci. Technol. 12, 405–420 (2015)

    Article  Google Scholar 

  5. Ardila-Leal, L.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; Quevedo-Hidalgo, B.E.: A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Molecules 26, 3813 (2021)

    Article  Google Scholar 

  6. Ghodke, S.A.; Sonawane, S.H.; Bhanvase, B.A.; Potoroko, I.: Advanced engineered nanomaterials for the treatment of wastewater, p. 959–970. Elsevier, Handbook of nanomaterials for industrial applications (2018)

    Google Scholar 

  7. Forgacs, E.; Cserháti, T.; Oros, G.: Removal of synthetic dyes from wastewaters: a review. Environ. Int. 30, 953–971 (2004)

    Article  Google Scholar 

  8. Piaskowski, K.; Świderska-Dąbrowska, R.; Zarzycki, P.K.: Dye removal from water and wastewater using various physical, chemical, and biological processes. J. AOAC Int. 10, 1371–1384 (2018)

    Article  Google Scholar 

  9. Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N.: Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 17, 195–213 (2019)

    Article  Google Scholar 

  10. Okoniewska, E.: Removal of selected dyes on activated carbons. Sustainability 13, 4300 (2021)

    Article  Google Scholar 

  11. Mouni, L.; Belkhiri, L.; Bollinger, J.-C.; Bouzaza, A.; Assadi, A.; Tirri, A.; Dahmoune, F.; Madani, K.; Remini, H.: Removal of methylene blue from aqueous solutions by adsorption on kaolin: kinetic and equilibrium studies. Appl. Clay Sci. 153, 38–45 (2018)

    Article  Google Scholar 

  12. Shahrin, E.W.; Narudin, N.A.; Padmosoedarso, K.M.; Kusrini, E.; Mahadi, A.H.; Shahri, N.N.; Usman, A.: Pectin derived from pomelo pith as a superior adsorbent to remove toxic acid blue 25 from aqueous solution. Carbohydr. Polym. Technol. Appl. 2, 100116 (2021)

    Google Scholar 

  13. Silva, F.; Nascimento, L.; Brito, M.; da Silva, K.; Paschoal, W.; Fujiyama, R.: Biosorption of methylene blue dye using natural biosorbents made from weeds. Materials 12, 1–16 (2019)

    Google Scholar 

  14. Lim, L.B.L.; Usman, A.; Hassan, M.H.; Zaidi, N.A.H.M.: Tropical wild fern (Diplazium esculentum) as a new and effective low-cost adsorbent for removal of toxic crystal violet dye. J. Taibah Univ. Sci. 14, 621–627 (2020)

    Article  Google Scholar 

  15. Jawad, A.H.; Ngoh, Y.S.; Radzun, K.A.: Utilization of watermelon (Citrullus lanatus) rinds as a natural low-cost biosorbent for adsorption of methylene blue: kinetic, equilibrium and thermodynamic studies. J. Taibah Univ. Sci. 12, 371–381 (2018)

    Article  Google Scholar 

  16. Sánchez-Jiménez, N.; Sevilla, M.T.; Cuevas, J.; Rodríguez, M.; Procopio, J.R.: Interaction of organic contaminants with natural clay type geosorbents: potential use as geologic barrier in urban landfill. J. Environ. Manag. 95, S182–S187 (2012)

    Article  Google Scholar 

  17. Yahaya, S.; Jikan, S.S.; Badarulzaman, N.A.; Adamu, A.D.: Chemical composition and particle size analysis of kaolin. Path Sci. 3, 1001–1004 (2017)

    Article  Google Scholar 

  18. Babu Valapa, R.; Loganathan, S.; Pugazhenthi, G.; Thomas, S.; Varghese, T.O.: An overview of polymer-clay nanocomposites, p. 29–81. Elsevier, Clay-polymer nanocomposites (2017)

    Book  Google Scholar 

  19. Shao, G.N.; Engole, M.; Imran, S.M.; Jeon, S.J.; Kim, H.T.: Sol-gel synthesis of photoactive kaolinite-titania: effect of the preparation method and their photocatalytic properties. Appl. Surf. Sci. 331, 98–107 (2015)

    Article  Google Scholar 

  20. Mustapha, S.; Ndamitso, M.M.; Abdulkareem, A.S.; Tijani, J.O.; Mohammed, A.K.; Shuaib, D.T.: Potential of using kaolin as a natural adsorbent for the removal of pollutants from tannery wastewater. Heliyon 5, e02923 (2019)

    Article  Google Scholar 

  21. Rida, K.; Bouraoui, S.; Hadnine, S.: Adsorption of methylene blue from aqueous solution by kaolin and zeolite. Appl. Clay Sci. 83–84, 99–105 (2013)

    Article  Google Scholar 

  22. Harris, R.G.; Wells, J.D.; Johnson, B.B.: Selective adsorption of dyes and other organic molecules to kaolinite and oxide surfaces. Colloids Surf. A Physicochem. Eng. Asp. 180, 131–140 (2001)

    Article  Google Scholar 

  23. Ziółkowska, D.; Shyichuk, A.; Karwasz, I.; Witkowska, M.: Adsorption of cationic and anionic dyes onto commercial kaolin. Adsorp. Sci. Technol. 27, 205–214 (2009)

    Article  Google Scholar 

  24. Yaseen, D.A.; Scholz, M.: Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int. J. Environ. Sci. Technol. 16, 1193–1226 (2019)

    Article  Google Scholar 

  25. Turabik, M.: Adsorption of basic dyes from single and binary component systems onto bentonite: simultaneous analysis of basic red 46 and basic yellow 28 by first order derivative spectrophotometric analysis method. J. Hazard. Mater. 158, 52–64 (2008)

    Article  Google Scholar 

  26. Dávila-Jiménez, M.M.; Elizalde-González, M.P.; Hernández-Montoya, V.: Performance of mango seed adsorbents in the adsorption of anthraquinone and azo acid dyes in single and binary aqueous solutions. Bioresour. Technol. 100, 6199–6206 (2009)

    Article  Google Scholar 

  27. Sismanoglu, T.; Kismir, Y.; Karakus, S.: Single and binary adsorption of reactive dyes from aqueous solutions onto clinoptilolite. J. Hazard. Mater. 184, 164–169 (2010)

    Article  Google Scholar 

  28. Adeyi, A.A.; Jamil, S.N.A.M.; Abdullah, L.C.; Choong, T.S.Y.; Lau, K.L.; Abdullah, M.: Simultaneous adsorption of cationic dyes from binary solutions by thiourea-modified poly (acrylonitrile-co-acrylic acid): detailed isotherm and kinetic studies. Materials 12, 2903 (2019)

    Article  Google Scholar 

  29. Adeyi, A.A.; Jamil, S.N.A.M.; Abdullah, L.C.; Choong, T.S.Y.; Lau, K.L.; Alias, N.H.: Simultaneous adsorption of malachite green and methylene blue dyes in a fixed-bed column using poly(acrylonitrile-co-acrylic acid) modified with thiourea. Molecules 25, 2650 (2020)

    Article  Google Scholar 

  30. Li, Y.; Xiao, H.; Pan, Y.; Zhang, M.; Jin, Y.: Thermal and pH dual-responsive cellulose microfilament spheres for dye removal in single and binary systems. J. Hazard. Mater. 377, 88–97 (2019)

    Article  Google Scholar 

  31. Rehman, M.Z.U.; Aslam, Z.; Shawabkeh, R.A.; Hussein, I.A.; Mahmood, N.: Concurrent adsorption of cationic and anionic dyes from environmental water on amine functionalized carbon. Water Sci. Technol. 81, 466–478 (2020)

    Article  Google Scholar 

  32. Asbollah, M.A.; Mahadi, A.H.; Kusrini, E.; Usman, A.: Synergistic effect in concurrent removal of toxic methylene blue and acid red-1 dyes from aqueous solution by durian rind: kinetics, isotherm, thermodynamics, and mechanism. Int. J. Phytoremediation 23, 1432–1443 (2021)

    Article  Google Scholar 

  33. Simonin, J.-P.: On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 300, 254–263 (2016)

    Article  Google Scholar 

  34. Robati, D.: Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J. Nanostructure Chem. 3, 55 (2013)

    Article  Google Scholar 

  35. Ho, Y.S.; Ng, J.C.Y.; McKay, G.: Kinetics of pollutant sorption by biosorbents: review. Sep. Purif. Methods 29, 189–232 (2000)

    Article  Google Scholar 

  36. Viegas, R.M.C.; Campinas, M.; Costa, H.; Rosa, M.J.: How do the HSDM and Boyd’s model compare for estimating intraparticle diffusion coefficients in adsorption processes. Adsorption 20, 737–746 (2014)

    Article  Google Scholar 

  37. Ghaffari, H.R.; Pasalari, H.; Tajvar, A.; Dindarloo, K.; Goudarzi, B.; Alipour, V.; Ghanbarneajd, A.: Linear and nonlinear two-parameter adsorption isotherm modeling: a case-study. Int. J. Eng. Sci. 6, 1–11 (2017)

    Google Scholar 

  38. Liu, Y.; Liu, Y.-J.: Biosorption isotherms, kinetics and thermodynamics. Sep. Purif. Technol. 61, 229–242 (2008)

    Article  Google Scholar 

  39. Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I.: A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 273, 425–434 (2019)

    Article  Google Scholar 

  40. Saikia, B.J.; Parthasarathy, G.: Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 1, 206–210 (2010)

    Article  Google Scholar 

  41. Castellano, M.; Turturro, A.; Riani, P.; Montanari, T.; Finocchio, E.; Ramis, G.; Busca, G.: Bulk and surface properties of commercial kaolins. Appl. Clay Sci. 48, 446–454 (2010)

    Article  Google Scholar 

  42. Bukalo, N.N.; Ekosse, G.I.E.; Odiyo, J.O.; Ogola, J.S.: Fourier transform infrared spectroscopy of clay size fraction of Cretaceous-Tertiary kaolins in the Douala Sub-Basin, Cameroon. Open Geosci. 9, 407–418 (2017)

    Google Scholar 

  43. Tironi, A.; Trezza, M.A.; Irassar, E.F.; Scian, A.N.: Thermal treatment of kaolin: effect on the pozzolanic activity. Procedia Mater. Sci. 1, 343–350 (2012)

    Article  Google Scholar 

  44. Ivanović, M.D.; Kljajević, L.M.; Nenadović, M.; Bundaleski, N.; Vukanac, I.; Todorović, B.Ž; Nenadović, S.S.: Physicochemical and radiological characterization of kaolin and its polymerization products. Mater. Constr. 68, e155 (2018)

    Article  Google Scholar 

  45. Güneyisi, E.; Gesoǧlu, M.; Özturan, T.; Mermerdaş, K.: Microstructural properties and pozzolanic activity of calcined kaolins as supplementary cementing materials. Can. J. Civ. Eng. 39, 1274–1284 (2012)

    Article  Google Scholar 

  46. Agarwal, P.; Huang, D.; Thakur, S.S.; Rupenthal, I.D.: Chapter 4—Nanotechnology for ocular drug delivery. In: Design of Nanostructures for Versatile Therapeutic Applications, pp. 137–188 (2018)

  47. El-Khaiary, M.I.; Malash, G.F.: Common data analysis errors in batch adsorption studies. Hydrometallurgy 105, 314–320 (2011)

    Article  Google Scholar 

  48. Sharma, P.; Das, M.R.: Removal of a cationic dye from aqueous solution using graphene oxide nanosheets: investigation of adsorption parameters. J. Chem. Eng. Data 58, 151–158 (2013)

    Article  Google Scholar 

  49. Dotto, G.L.; Pinto, L.A.A.: Analysis of mass transfer kinetics in the biosorption of synthetic dyes onto spirulina platensis nanoparticles. Biochem. Eng. J. 68, 85–90 (2012)

    Article  Google Scholar 

  50. Samat, J.H.; Shahri, N.N.M.; Asbollah, M.A.; Suhaimi, N.A.A.; Padmosoedarso, K.M.; Kusrini, E.; Mahadi, A.H.; Hobley, J.; Usman, A.: Adsorption of acid blue 25 on agricultural wastes: efficiency, kinetics, mechanism and regeneration. Air. Soil Water Res. 14, 1–12 (2021). https://doi.org/10.1177/11786221211057496

    Article  Google Scholar 

  51. Hanafiah, M.A.K.M.; Ngah, W.S.W.; Zolkafly, S.H.; Teong, L.C.; Majid, Z.A.A.: Acid blue 25 adsorption on base treated Shorea dasyphylla sawdust: kinetic, isotherm, thermodynamic and spectroscopic analysis. J. Environ. Sci. 24, 261–268 (2012)

    Article  Google Scholar 

  52. Ferrero, F.: Dye removal by low cost adsorbents: hazelnut shells in comparison with wood sawdust. J. Hazard. Mater. 142, 144–152 (2006)

    Article  Google Scholar 

  53. Dahri, M.K.; Lim, L.B.L.; Priyantha, N.; Chan, C.M.: Removal of acid blue 25 using cempedak durian peel from aqueous medium: Isotherm, kinetics and thermodynamics studies. Int. Food Res. J. 23, 1154–2116 (2016)

    Google Scholar 

  54. Khalid, K.; Ngah, W.S.W.; Hanafiah, M.A.K.M.; Malek, N.S.A.; Khazaai, S.N.M.: Acid blue 25 adsorption onto phosphoric acid treated rubber leaf powder. Am. J. Environ. Eng. 5, 19–25 (2015)

    Google Scholar 

  55. Lakkaboyana, S.K.; Khantong, S.; Kabir, M.A.; Ali, Y.; Yaacob, W.Z.W.: Removal of acid blue 25 dye from wastewater using rambutan (Nephelium lappaceum Linn.) seed as an efficient natural biosorbent. Indian J. Adv. Chem. Sci. 6, 111–117 (2018)

    Google Scholar 

  56. Kooh, M.R.R.; Dahri, M.K.; Lim, L.B.L.; Lim, L.H.: Batch adsorption studies on the removal of acid blue 25 from aqueous solution using Azolla pinnata and soya bean waste. Arab. J. Sci. Eng. 41, 2453–2464 (2016)

    Article  Google Scholar 

  57. Alizadeh, S.; Seyyedi, K.: Removal of C.I. acid red 1 (AR1) dye pollutant from contaminated waters by adsorption method using sunflower seed shells and pine cone as agro-waste materials. J. Appl. Chem. Res. 13, 93–105 (2019)

    Google Scholar 

  58. Khanna, S.; Rattan, V.K.: Removal of acid red 1 from aqueous waste streams using peel of Cucumis sativus fruit. Equilibrium studies. J. Chem. Technol. Metall. 52, 803–811 (2017)

    Google Scholar 

  59. Juang, L.-C.; Lee, C.-K.; Wang, C.-C.; Hung, S.-H.; Lyu, M.-D.: Adsorptive removal of acid red 1 from aqueous solution with surfactant modified titanate nanotubes. Environ. Eng. Sci. 25, 519–528 (2008)

    Article  Google Scholar 

  60. Su, X.; Liu, L.; Zhang, Y.; Liao, Q.; Yu, Q.; Meng, R.; Yao, J.: Efficient removal of cationic and anionic dyes using cellulose-g-p(AA-co-AM) bio-adsorbent. BioResources 12, 3413–3424 (2017)

    Article  Google Scholar 

  61. Kılıç, M.; Janabi, A.S.K.: Investigation of dyes adsorption with activated carbon obtained from Cordia Myxa. Bilge Int. J. Sci. Technol. 1, 87–104 (2017)

    Google Scholar 

  62. Kumar, N.; Andersson, M.P.; van den Ende, D.; Mugele, F.; Siretanu, I.: Probing the surface charge on the basal planes of kaolinite particles with high-resolution atomic force microscopy. Langmuir 33, 14226–14237 (2017)

    Article  Google Scholar 

  63. Jaradat, K.A.; Darbari, Z.; Elbakhshwan, M.; Abdelaziz, S.L.; Gill, S.K.; Dooryhee, E.; Ecker, L.E.: Heating-freezing effects on the orientation of kaolin clay particles. Appl. Clay Sci. 150, 163–174 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Eny Kusrini is thankful to Ministry of Research, Technology and Higher Education of the Republic of Indonesia through PTUPT Grant No. NKB-281/UN2.RST/HKP.05.00/2021 and Dr. Jonathan Hobley is grateful to National Cheng Kung University’s NCKU90 distinguished visiting scholar program for hosting his research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eny Kusrini or Anwar Usman.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashrul Asbollah, M., Sahid, M.S.M., Padmosoedarso, K.M. et al. Individual and Competitive Adsorption of Negatively Charged Acid Blue 25 and Acid Red 1 onto Raw Indonesian Kaolin Clay. Arab J Sci Eng 47, 6617–6630 (2022). https://doi.org/10.1007/s13369-021-06498-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06498-3

Keywords

Navigation