Skip to main content
Log in

Retinex-Centered Contrast Enhancement Method for Histopathology Images with Weighted CLAHE

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the field of pathological testing, it has been discovered that the visibility of histopathological images is poor in the majority of cases due to insufficient brightness and contrast. Improving their quality and preserving their natural characteristics are critical requirements for initial identification and subsequent analysis. The paper described a novel image enhancement technique for improving color histopathology image contrast based on retinex theory and local contrast adjustment. Initially, a multiscale retinex with adaptive weighting is proposed, which first processes the V channel in the HSV color space and then combines several single-scale retinex (SSR) resulting outputs in such a way that the weight corresponding to each SSR scale is determined adaptively from the value channel image, depending on the strength and weakness of the various SSR outputs. Following that, the new weighted contrast limited adaptive histogram equalization method is used to improve local contrast in the L*a*b* color space's luminosity channel, which enhances local histopathology details by fusing the two CLAHE outputs corresponding to the large and lower clip limits. The presented scheme is visually and quantitatively evaluated in comparison with other existing algorithms. Visual and quantitative results on a variety of test images show that the proposed method outperforms all other conventional approaches and produces higher-quality histopathology images, which is especially useful for disease inspection and diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

The datasets generated and/or analyzed during the present study are available from the corresponding author on reasonable request.

References

  1. Rubin, R., Strayer, D., Rubin, E., McDonald, J.: Rubin’s Pathology: Clinicopathologic Foundations of Medicine. Lippin cott. Williams and Wilkins (2007)

  2. Gurcan, M.N.; Boucheron, L.; Can, A.; Madabhushi, A.; Rajpoot, N.; Yener, B.: Histopathological image analysis: a review. IEEE Rev Biomed Eng 2, 147–171 (2009)

    Article  Google Scholar 

  3. Dabass, M., Dabass, J.: Pre-processing techniques for colon histopathology images. Adv. Commun. Computat. Technol. 1121–1138| (2021)

  4. Hai, S.: Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer (2015)

  5. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, Addison-Wesley (1993)

  6. Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans Consum Electr 43(1), 1–8 (1997)

    Article  Google Scholar 

  7. Ooi, C.H.; Kong, N.S.P.; Ibrahim, H.: Bi-histogram equalization with a plateau limit for digital image enhancement. IEEE Trans Consum Electron 55(4), 2072–2080 (2009)

    Article  Google Scholar 

  8. Wang, Y.; Chen, Q.; Zhang, B.: Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans Consum Electr. 45(1), 68–75 (1999)

    Article  Google Scholar 

  9. Chen, S.D.; Ramli, A.R.: Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans Consum Electr. 49(4), 1301–1309 (2003)

    Article  Google Scholar 

  10. Abdullah-Al-Wadud, M.; Ali, A.K.M.; Hasanul, K.M.; Chae, O.: A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(2), 593–660 (2007)

    Article  Google Scholar 

  11. Chen, S.D.; Ramli, A.R.: Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans Consum Electr 49(4), 1310–1319 (2003)

    Article  Google Scholar 

  12. Ibrahim, H.; Kong, N.: Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(4), 1752–1758 (2007)

    Article  Google Scholar 

  13. Al Ameen, G.; Sulong, A Rehman: An innovative technique for contrast enhancement of computed tomography images using normalized gamma-corrected contrast-limited adaptive histogram equalization. EURASIP Journal on Advances in Signal Processing. 2015(1), 1–12 (2015)

    Article  Google Scholar 

  14. Gandhamal, A.; Sanjay, T.; Gajre, S.; Fadzil, A.M.; Kumar, D.: Local gray level S-curve transformation – a generalized contrast enhancement technique for medical images. Comput. Biol. Med. 83, 120–133 (2017)

    Article  Google Scholar 

  15. Soomro, T.A.; Khan, T.M.; Khan, A.U.; Gao, J.: Impact of ICA-based image enhancement technique on retinal blood vessels segmentation. IEEE Access. 6, 3524–3538 (2018)

    Article  Google Scholar 

  16. Kallel, F.; Hamida, A.B.: A new adaptive gamma correction-based algorithm using DWT-SVD for non-contrast CT image enhancement. SIViP 16(8), 666–675 (2018)

    Google Scholar 

  17. Fu, Q.; Jung, C.; Xu, K.: Retinex-Based Perceptual Contrast Enhancement in Images Using Luminance Adaptation. IEEE Access. 6, 61277–61286 (2018)

    Article  Google Scholar 

  18. Cao, G.; Huang, L.; Tian, H.; Huang, X.; Wang, Y.; Zhi, R.: Contrast enhancement of brightness-distorted images by improved adaptive gamma correction. Comput. Electr. Eng. 66, 569–582 (2018)

    Article  Google Scholar 

  19. Bhateja, V., Nigam, M., Bhadauria, A. S., Arya, A., & Zhang, E. Y.-D.: Human visual system based optimized mathematical morphology approach for enhancement of brain MR images. J. Amb. Intellig. Human. Comput. 1–9 (2019)

  20. Veluchamy, M.; Subramani, B.: Image contrast and color enhancement using adaptive gamma correction and histogram equalization. Optik 183, 329–337 (2019)

    Article  Google Scholar 

  21. Bhandari, A.K.: A logarithmic law-based histogram modification scheme for naturalness image contrast enhancement. J. Ambient Intellig. Human. Comput. 11, 1605–1627 (2020)

    Article  Google Scholar 

  22. Gopinath, P.: A hybrid feature preservation technique based on luminosity and edge-based contrast enhancement in color fundus images. Biocybernet. Biomed. Eng. 40(2), 752–763 (2020)

    Article  Google Scholar 

  23. Sahnoun, M.; Kallel, F.; Dammak, M.: Spinal cord MRI contrast enhancement using adaptive gamma correction for patient with multiple sclerosis. SIViP 14, 377–385 (2020)

    Article  Google Scholar 

  24. Subramani, B.; Veluchamy, M.: A fast and effective method for enhancement of contrast resolution properties in medical images. Multimedia Tools and Appl. 79, 7837–7855 (2020)

    Article  Google Scholar 

  25. Rao, S.: Dynamic Histogram Equalization for contrast enhancement for digital images. Appl. Soft Comput. J 89, 106114 (2020)

    Article  Google Scholar 

  26. Katırcıoğlu, F.: Colour image enhancement with brightness preservation and edge sharpening using a heat conduction matrix. IET Image Proc. 14(13), 3202–3214 (2020)

    Article  Google Scholar 

  27. Kumar, S., Bhandari, A.K., Raj, A., Swaraj, K., Kumar, S.: Triple Clipped Histogram Based Medical Image Enhancement Using Spatial Frequency. IEEE Transactions on Nano Bioscience (2021)

  28. Kumar, U., Kumar, A,S.: Genetic algorithm based adaptive histogram equalization (GAAHE) technique for medical image enhancement. Optik. 230 (2021)

  29. Kandhway, P.; Bhandari, A.K.; Singh, A.: A novel reformed histogram equalization based medical image contrast enhancement using krill herd optimization. Biomed. Signal Proc. Control 56, 101677 (2019)

    Article  Google Scholar 

  30. Singh, N.; Kaur, L.; Singh, K.: Histogram equalization techniques for enhancement of low radiance retinal images for early detection of diabetic retinopathy. Eng. Sci. Technol. Int. J 22, 736–745 (2019)

    Google Scholar 

  31. Kaur, H., Koundal, D., Kadyan, V.: Image Fusion Techniques: A Survey. Arch. Computat. Meth. Eng. (2021)

  32. Jha, N., Saxena, A. K., Shrivastava, A., Manoria, M.: A review on various image fusion algorithms. In: International Conference on Recent Innovations in Signal Processing and Embedded Systems (RISE). IEEE (2017)

  33. Jobson, D.J.; Rahman, Z.U.; Woodell, G.A.: Properties and performance of a center/surround Retinex. IEEE Trans. Image Process 6(3), 451–462 (1997)

    Article  Google Scholar 

  34. Zhenghua, H., Zhicheng, W., Zhang, J.: Image enhancement with the preservation of brightness and stuctures by employing contrast limited dynamic quadric-histogram equalization. Optik. 226(1) (2021)

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karishma Rao.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, K., Bansal, M. & Kaur, G. Retinex-Centered Contrast Enhancement Method for Histopathology Images with Weighted CLAHE. Arab J Sci Eng 47, 13781–13798 (2022). https://doi.org/10.1007/s13369-021-06421-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06421-w

Keywords

Navigation