Skip to main content
Log in

Behaviour of Geopolymer Concrete Two-Way Slabs Reinforced by FRP Bars After Exposure to Elevated Temperatures

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study investigates the residual mechanical behaviour of geopolymer concrete (GC) slabs reinforced with fibre-reinforced polymer (FRP) bars after exposure to elevated temperatures. For the aim of the study, a comprehensive experimental study was implemented for FRP-reinforced two-way GC slabs that were exposed to four different temperature levels by considering the reinforcement material, reinforcement percentage, type of concrete and thickness of the concrete cover. The residual mechanical properties, ultimate slab strength and deflection performance were all examined. As a result of the study, similar performance was observed for the slabs exposed to 350 °C and ambient temperature, while a significant difference was seen for the specimens exposed to 550 and 650 °C. The effects of several parameters on the high-temperature performance of FRP-reinforced GC slabs were examined in detail. The parametric study results indicated that slabs reinforced with basalt fibre-reinforced polymer (BFRP) bars have a higher elevated temperature resistance than slabs strengthened with glass fibre-reinforced polymer (GFRP) bars, even for the same ratio of reinforcement. Moreover, the results showed that upon increasing the reinforcement ratio, a higher punching shear capacity and lower deflections were obtained at both ambient and elevated temperatures. Additionally, the results indicated that the high-temperature resistance of GC slabs was better than the high-temperature resistance of ordinary concrete (OC) slabs. Moreover, the thickness of the concrete cover showed a significant impact on the high-temperature behaviour of FRP-reinforced concrete slabs. The slabs with a higher cover thickness exhibited better performance at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Crozier, D.A.; Sanjayan, J.G.: Chemical and physical degradation of concrete at elevated temperatures. Concr Aust 25, 18–20 (1999)

    Google Scholar 

  2. Sanjayan, G.; Stocks, L.J.: Spalling of high-strength silica fume concrete in fire. ACI Mater. J. 90, 170–173 (1993)

    Google Scholar 

  3. McCaffrey, R.: Climate change and the cement industry. Global cement and lime magazine (Environmental special issue. (2009); 99–117

  4. Fu, X.D.C.D.: Effect of corrosion on the bond between concrete and steel rebar. Cem. Concr. Res. 14, 121–128 (1997). https://doi.org/10.1016/S0008-8846(97)00172-5

    Article  Google Scholar 

  5. Coccia, S.; Imperatore, S.; Rinaldi, Z.: Influence of corrosion on the bond strength of steel rebars in concrete. Mater. Struct. Constr. 49, 537–551 (2016). https://doi.org/10.1617/s11527-014-0518-x

    Article  Google Scholar 

  6. Davidovits, J.: Geopolymers and geopolymeric materials. J. Therm. Anal. 102, 35–44 (1989). https://doi.org/10.1007/BF01904446

    Article  Google Scholar 

  7. Duxson, P.; Fernández-Jiménez, A.; Provis, J.L., et al.: Geopolymer technology: The current state of the art. J. Mater. Sci. 42, 2917–2933 (2007). https://doi.org/10.1007/s10853-006-0637-z

    Article  Google Scholar 

  8. Aliques-Granero, J.; Tognonvi, M.T.; Tagnit-Hamou, A.: Durability study of AAMs: Sulfate attack resistance. Constr. Build. Mater. 229, 117100 (2019). https://doi.org/10.1016/j.conbuildmat.2019.117100

    Article  Google Scholar 

  9. Lahoti, M.; Tan, K.H.; Yang, E.-H.: A critical review of geopolymer properties for structural fire-resistance applications. Constr. Build. Mater. 221, 514–526 (2019). https://doi.org/10.1016/j.conbuildmat.2019.06.076

    Article  Google Scholar 

  10. Shill, S.K.; Al-Deen, S.; Ashraf, M., et al.: Resistance of fly ash based geopolymer mortar to both chemicals and high thermal cycles simultaneously. Constr. Build. Mater. 239, 117886 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117886

    Article  Google Scholar 

  11. Cheng, T.W.; Chiu, J.P.: Fire-resistant geopolymer produce by granulated blast furnace slag. Miner. Eng. 16, 205–210 (2003). https://doi.org/10.1016/S0892-6875(03)00008-6

    Article  Google Scholar 

  12. Abdel-Ghani, N.T.; Elsayed, H.A.; AbdelMoied, S.: Geopolymer synthesis by the alkali-activation of blastfurnace steel slag and its fire-resistance. Hbrc. J. 14, 159–164 (2018). https://doi.org/10.1016/j.hbrcj.2016.06.001

    Article  Google Scholar 

  13. Wang, K.; Tang, Q.; Cui, X., et al.: Development of near-zero water consumption cement materials via the geopolymerization of tektites and its implication for lunar construction. Sci. Rep. 6, 1–8 (2016). https://doi.org/10.1038/srep29659

    Article  Google Scholar 

  14. Lloyd, N.A.l Rangan, B.V.: Geopolymer concrete: a review of development and opportunities. In: 35th Conference on Our World in Concrete and Structures. (2010), pp. 25–27. http://hdl.handle.net/20.500.11937/12898

  15. Kambic, M.; Hammaker, J.: Geopolymer Concrete: The Future of Green Building Materials.

  16. Thaarrini, J.; Dhivya, S.: Comparative study on the production cost of geopolymer and conventional concretes. Int. J. Civ. Eng. Res. 7, 117–124 (2016)

    Google Scholar 

  17. Sreevidya, V.; Anuradha, R.; Dinakar, D., et al.: Acid resistance of flyash based geopolymer mortar under ambient curing and heat curing. Int. J. Eng. Sci. Technol. 4, 681–684 (2012). https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1054.2669&rep=rep1&type=pdf

  18. de Sarker, P.K.M.T.: Geopolymer concrete after exposure to high temperature heat. Recent. Dev. Struct. Eng. 120, 251–264 (2007)

    Google Scholar 

  19. Sarker, P.K.; Kelly, S.; Yao, Z.: Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater. Des. 63, 584–592 (2014). https://doi.org/10.1016/j.matdes.2014.06.059

    Article  Google Scholar 

  20. Li, Z.; Xu, J.; Bai, E.: Static and dynamic mechanical properties of concrete after high temperature exposure. Mater. Sci. Eng. A 544, 27–32 (2012). https://doi.org/10.1016/j.msea.2012.02.058

    Article  Google Scholar 

  21. Kong, D.L.Y.; Sanjayan, J.G.: Damage behavior of geopolymer composites exposed to elevated temperatures. Cem. Concr. Compos. 30, 986–991 (2008). https://doi.org/10.1016/j.cemconcomp.2008.08.001

    Article  Google Scholar 

  22. Shaikh, F.U.A.; Vimonsatit, V.: Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures. Fire. Mater. 39, 174–188 (2015). https://doi.org/10.1002/fam.2240

    Article  Google Scholar 

  23. Kong, D.L.Y.; Sanjayan, J.G.: Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem. Concr. Res. 40, 334–339 (2010). https://doi.org/10.1016/j.cemconres.2009.10.017

    Article  Google Scholar 

  24. Lyon, R.E.; Balaguru, P.N.; Foden, A., et al.: Fire-resistant aluminosilicate composites. Fire. Mater. 21, 67–73 (1997). https://doi.org/10.1002/(SICI)1099-1018(199703)21:2%3c67::AID-FAM596%3e3.0.CO;2-N

    Article  Google Scholar 

  25. Al-Bakri Abdullah, M.M.; Jamaludin, L.; Hussin, K., et al.: Fly ash porous material using geopolymerization process for high temperature exposure. Int. J. Mol. Sci. 13, 4388–4395 (2012). https://doi.org/10.3390/ijms13044388

    Article  Google Scholar 

  26. Kodur, V.K.R.; Bisby, L.A.: Evaluation of fire endurance of concrete slabs reinforced with fiber-reinforced polymer bars. J. Struct. Eng. 131, 34–43 (2005). https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(34)

    Article  Google Scholar 

  27. Bisby, L.A.; Green, M.F.; Kodur, V.K.R.: Response to fire of concrete structures that incorporate FRP. Prog. Struct. Eng. Mater. 7, 136–149 (2005). https://doi.org/10.1002/pse.198

    Article  Google Scholar 

  28. Wang, Y.C.; Kodur, V.: Variation of strength and stiffness of fibre reinforced polymer reinforcing bars with temperature. Cem. Concr. Compos. 27, 864–874 (2005). https://doi.org/10.1016/j.cemconcomp.2005.03.012

    Article  Google Scholar 

  29. Keller, T.; Tracy, C.; Hugi, E.: Fire endurance of loaded and liquid-cooled GFRP slabs for construction. Compos. Part A Appl. Sci. Manuf. 37, 1055–1067 (2006). https://doi.org/10.1016/j.compositesa.2005.03.030

    Article  Google Scholar 

  30. Correia, J.R.; Branco, F.A.; Ferreira, J.G., et al.: Fire protection systems for building floors made of pultruded GFRP profiles: Part 1: Experimental investigations. Compos. Part B Eng. 41, 617–629 (2010). https://doi.org/10.1016/j.compositesb.2010.09.018

    Article  Google Scholar 

  31. Kodur, V.K.R.; Bisby, L.A.; Foo, S.H.C.: Thermal behavior of fire-exposed concrete slabs reinforced with fiber-reinforced polymer bars. ACI Struct. J. 102, 799–807 (2005) https://www.proquest.com/docview/198361814

  32. CAN/CSA S-02. Design and Construction of Building Components with Fibre-Reinforced Polymers. [Canadian Stand Assoc 2009; 177.

  33. ACI 440.1R-15. Guide for the Design and Construction of Structural Concrete Reinforced with Firber-Reinforced Polymer (FRP) Bars (ACI440.1R-15). 2015.

  34. CNR Advisory Comittee. Guide for the design and construction of concrete structures reinforced with fiber-reinforced polymer bars. Cnr-Dt-203/2006 2007; 39.

  35. Kodur and Baingo. Fire Resistance of FRP Reinforced Concrete Slabs. Inst. Res. Constr. https://doi.org/10.4224/20331622

  36. Shi, J.; Zhu, H.; Wu, Z., et al.: Durability of BFRP and hybrid FRP sheets under freeze-thaw cycling. Adv. Mater. Res. 163–167, 3297–3300 (2011). https://doi.org/10.4028/www.scientific.net/AMR.163-167.3297

    Article  Google Scholar 

  37. Li, W.; Xu, J.: Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading. Mater. Sci. Eng. A 505, 178–186 (2009). https://doi.org/10.1016/j.msea.2008.11.063

    Article  Google Scholar 

  38. El Refai, A.; Ammar, M.-A.; Masmoudi, R.: Bond performance of basalt fiber-reinforced polymer bars to concrete. J. Compos. Constr. 19, 04014050 (2015). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000487

    Article  Google Scholar 

  39. ASTM C989. Standard Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars. ASTM Int 2005; i: 2–6

  40. ASTM C618. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use. 2010

  41. ASTM C127. ASTM C127: Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International, https://global.ihs.com/doc_detail.cfm?document_name=ASTM C127&item_s_key=00014322 (2015, accessed 12 June 2021)

  42. TS EN 197. Cement Part 1: Composition, Specifications and Conformity Criteria for Common Cements. Turkish Stand 2011; 50

  43. Davidovits, J.: Properties of Geopolymer Cements. First Int. Conf. Alkaline Cem. Concr. 131–149 (1994) https://www.geopolymer.org/wp-content/uploads/KIEV.pdf

  44. Hamidi, R.M.; Man, Z.; Azizli, K.A.: Concentration of NaOH and the effect on the properties of fly ash based geopolymer. Procedia Eng. 148, 189–193 (2016). https://doi.org/10.1016/j.proeng.2016.06.568

    Article  Google Scholar 

  45. Razak, R.A.; Abdullah, M.M.A.B.; Hussin, K., et al.: Optimization of NaOH molarity, LUSI mud/alkaline activator, and Na2SiO3/NaOH ratio to produce lightweight aggregate-based geopolymer. Int. J. Mol.. Sci. 16, 11629–11647 (2015). https://doi.org/10.3390/ijms160511629

    Article  Google Scholar 

  46. Olivia, M.; Nikraz, H.: Properties of fly ash geopolymer concrete designed by Taguchi method. Mater. Des. 36, 191–198 (2012). https://doi.org/10.1016/j.matdes.2011.10.036

    Article  Google Scholar 

  47. Salem, H.; Issa, H.; Gheith, H., et al.: Punching shear strength of reinforced concrete flat slabs subjected to fire on their tension sides. HBRC J. 8, 36–46 (2012). https://doi.org/10.1016/j.hbrcj.2011.10.001

    Article  Google Scholar 

  48. Annerel, E.; Lu, L.; Taerwe, L.: Punching shear tests on flat concrete slabs exposed to fire. Fire. Saf. J. 57, 83–95 (2013). https://doi.org/10.1016/j.firesaf.2012.10.013

    Article  Google Scholar 

  49. Liao, J.-S.; Cheng, F.-P.; Chen, C.-C.: Fire Resistance of Concrete Slabs in Punching Shear. J. Struct. Eng. 140, 04013025 (2014). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000809

    Article  Google Scholar 

  50. Ghoreishi, M.; Bagchi, A.; Sultan, M.A.: Punching shear behavior of concrete flat slabs in elevated temperature and fire. Adv. Struct. Eng. 18, 659–674 (2015). https://doi.org/10.1260/1369-4332.18.5.659

    Article  Google Scholar 

  51. ACI 318–08. Building code requirements for structural concrete (ACI 318–08) and commentary, https://books.google.co.uk/books?hl=en&lr=&id=c6yQszMV2-EC&oi=fnd&pg=PT10&dq=concrete&ots=nWUrH_-zNL&sig=UshlYyVQSHxVDcaAdLIMw-9gylQ (2008)

  52. Arna’ot, F.H.; Abbass, A.A.; Abualtemen, A.A., et al.: Residual strength of high strength concentric column-SFRC flat plate exposed to high temperatures. Constr. Build. Mater. 154, 204–218 (2017) https://doi.org/10.1016/j.conbuildmat.2017.07.141

  53. Zhang, B.; Bicanic, N.; Pearce, C.J., et al.: Residual fracture properties of normal- and high-strength concrete subject to elevated temperatures. Mag. Concr. Res. 52, 123–136 (2000). https://doi.org/10.1680/macr.2000.52.2.123

    Article  Google Scholar 

  54. Zhang, B., Bicanic, N., Pearce, C.J., et al.: Discussion: Residual fracture properties of normal- and high-strength concrete subject to elevated temperatures. https://doi.org/10.1680/macr.2000.52.2.123

  55. Sarker, P.K.; McBeath, S.: Fire endurance of steel reinforced fly ash geopolymer concrete elements. Constr. Build. Mater. 90, 91–98 (2015). https://doi.org/10.1016/j.conbuildmat.2015.04.054

    Article  Google Scholar 

  56. Annerel, E.; Taerwe, L.; Merci, B., et al.: Thermo-mechanical analysis of an underground car park structure exposed to fire. Fire. Saf. J. 57, 96–106 (2013). https://doi.org/10.1016/j.firesaf.2012.07.006

    Article  Google Scholar 

  57. Bamonte, P.; Felicetti, R.: Fire scenario and structural behaviour of underground parking lots exposed to fire. Appl. Struct. Fire Eng. Prague. http://fire.fsv.cvut.cz/ASFE09/Proceedings/2nd_session.pdf

  58. Youm, H.S.; Hong, S.G.: Evaluation for punching shear strength of slab-column connections with Ultra high performance fiber-reinforced concrete overlay. Int. J. Struct. Constr. Eng. 12, 56–61 (2018). https://doi.org/10.5281/zenodo.1315725

    Article  Google Scholar 

  59. Carvelli, V.; Pisani, M.A.; Poggi, C.: High temperature effects on concrete members reinforced with GFRP rebars. Compos. Part B Eng. 54, 125–132 (2013). https://doi.org/10.1016/j.compositesb.2013.05.013

    Article  Google Scholar 

  60. Gooranorimi, O.; Claure, G.; De Caso, F., et al.: Post-fire behavior of GFRP bars and GFRP-RC slabs. J. Mater. Civ. Eng. 30, 4017296 (2018). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002168

    Article  Google Scholar 

  61. Ju, M.; Park, K.; Park, C.: Punching shear behavior of two-way concrete slabs reinforced with glass-fiber-reinforced polymer (GFRP) bars. Polymers (Basel) 10, 893 (2018). https://doi.org/10.3390/polym10080893

    Article  Google Scholar 

  62. Li, B.; Xu, L.; Chi, Y., et al.: Experimental investigation on the stress-strain behavior of steel fiber reinforced concrete subjected to uniaxial cyclic compression. Constr. Build. Mater. 140, 109–118 (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.094

    Article  Google Scholar 

  63. Zhao, R.; Sanjayan, J.G.: Geopolymer and Portland cement concretes in simulated fire. Mag. Concr. Res. 63, 163–173 (2011). https://doi.org/10.1680/macr.9.00110

    Article  Google Scholar 

  64. Cruz Hernández, R.A.; Zapata Orduz, L.E.; Quintero Ortiz, L.A., et al.: Physical and mechanical characterization of concrete exposed to elevated temperatures by using ultrasonic pulse velocity. Rev. Fac. Ing. Univ. Antioquia 108–129 (2015). https://www.redalyc.org/articulo.oa?id=43038630012

  65. Demir, U.; Goksu, C.; Unal, G., et al.: Effect of fire damage on seismic behavior of cast-in-place reinforced concrete columns. J. Struct. Eng. 146, 4020232 (2020). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002794

    Article  Google Scholar 

  66. Gentry, T.R.; Bank, L.C.; Barkatt, A., et al.: Accelerated test methods to determine the long-term Behavior of composite highway structures subject to environmental loading. J. Compos. Technol. Res. 20, 38–50 (1998). https://doi.org/10.1520/CTR10499J

    Article  Google Scholar 

  67. Razaqpur, A.G.; Svecova, D.C.M.: 38 STRENGTH AND DEFORMATIONS OF FRP REINFORCED FLAT SLAB STRUCTURES in Non-Metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the ... - L. Taerwe - Google Books. International RILEM Symposium, https://books.google.com.tr/books?hl=en&lr=&id=dUVZDwAAQBAJ&oi=fnd&pg=PA322&dq=related:Lc8Y53P06XcJ:scholar.google.com/&ots=TzLbZLL38u&sig=sHReE2bgeWJJKBsErdETBfDJeEM&redir_esc=y#v=onepage&q&f=false (1995, accessed 13 June 2021). https://doi.org/10.1201/9781482271621

  68. Tekle, B.H.; Khennane, A.; Kayali, O.: Bond properties of sand-coated GFRP bars with fly ash-based Geopolymer concrete. J. Compos. Constr. 20, 04016025 (2016). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000685

    Article  Google Scholar 

  69. Zaidi, A.; Masmoudi, R.: Thermal effect on fiber reinforced polymer reinforced concrete slabs. Can. J. Civ. Eng. 35, 312–320 (2008). https://doi.org/10.1139/L07-110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sarwar H. Mohmmad or Mehmet E. Gülşan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohmmad, S.H., Gülşan, M.E. & Çevik, A. Behaviour of Geopolymer Concrete Two-Way Slabs Reinforced by FRP Bars After Exposure to Elevated Temperatures. Arab J Sci Eng 47, 12399–12421 (2022). https://doi.org/10.1007/s13369-021-06411-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06411-y

Keywords

Navigation