Skip to main content

Advertisement

Log in

An Improved and Robust Encoder–Decoder for Skin Lesion Segmentation

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Automatic segmentation of skin lesions is an important step in computer-aided diagnosis systems for melanoma detection. Although numerous methods have been proposed in the literature, this task is still a challenging issue due to the similarity between different lesions and complex visual characteristics that may be presented in the images. In this paper, we propose major modifications to the state-of-the-art U-Net structure to further improve its capability in skin lesion segmentation. These modifications are presented in both the encoding and the decoding paths. Instead of using only standard convolutional layers like U-Net, the proposed encoding path consists of 10 standard convolutional layers, which are inspired from the Visual Geometry Group (VGG16) network, followed by a pyramid pooling module and a dilated convolutional block. This combination enables to learn better representative feature maps and preserve more spatial resolution. Furthermore, dilated residual blocks are introduced in the decoding path to further refine the segmentation maps. The experimental results on three datasets including the IEEE International Symposium on Biomedical Imaging (ISBI) 2017, ISBI 2016, and PH2 showed that our proposed method has better performance than the basic U-Net, FCN, SegNet, and U-Net + + , and achieved the performance of state-of-the-art segmentation techniques, with minimum pre- and post-processing operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8

Similar content being viewed by others

References

  1. Barata, C.; Celebi, M.E.; Marques, J.S.: A survey of feature extraction in dermoscopy image analysis of skin cancer. IEEE J. Biomed. Health Inform. 23(3), 1096–1109 (2019)

    Article  Google Scholar 

  2. Celebi, M.E.; Codella, N.; Halpern, A.: Dermoscopy image analysis: overview and future directions. IEEE J. Biomed. Health Inform. 23, 474–478 (2019)

    Article  Google Scholar 

  3. Siegel, R.L.; Miller, K.D.; Jemal, A.: Cancer statistics, 2020. CA Cancer J Clin. 70(1), 7–30 (2020)

    Article  Google Scholar 

  4. Celebi, M.E.; Iyatomi, H.; Schaefer, G.; Stoecker, W.V.: Lesion border detection in dermoscopy images. Comput. Med. Imaging Graph. 33(2), 148–153 (2009)

    Article  Google Scholar 

  5. Yuan, Y.; Chao, M.; Lo, Y.C.: Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Trans. Med. Imaging 36(9), 1876–1886 (2017)

    Article  Google Scholar 

  6. Garnavi, R.; Aldeen, M.; Celebi, M.E.; Bhuiyan, A.; Dolianitis, C.; Varigos, G.: Skin lesion segmentation using color channel optimization and clustering-based histogram thresholding. Int. J. Biomed. Biol. Eng. 36, 365–373 (2009)

    Google Scholar 

  7. Silveira, M.; Nascimento, J.C.; Marques, J.S., et al.: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J. Sel Top. Signal Process. 3(1), 35–45 (2009)

    Article  Google Scholar 

  8. Bi, L.; Kim, J.; Ahn, E., et al.: Step-wise integration of deep class-specific learning for dermoscopic image segmentation. Pattern Recogn. 85, 78–89 (2019)

    Article  Google Scholar 

  9. Celebi, M.E.; Wen, Q.; Iyatomi, H.; Shimizu, K.; Zhou, H.; Schaefer, G.: A state-of-the-art survey on lesion border detection in dermoscopy images. Dermoscopy Image Anal 10, 97–129 (2015)

    Google Scholar 

  10. Celebi, M.E.; Wen, Q.; Hwang, S.; Iyatomi, H.; Schaefer, G.: Lesion border detection in dermoscopy images using ensembles of thresholding methods. Skin Res. Technol. 19(1), 252–258 (2013)

    Article  Google Scholar 

  11. Suer, S.; Kockara, S.; Mete, M.: An improved border detection in dermoscopy images for density based clustering. BMC Bioinf. 12, S12 BioMed Central (2011)

  12. Abbas, Q.; Celebi, M.E.; Fondon, G.I.; Rashid, M.: Lesion border detection in dermoscopy images using dynamic programming. Skin Res. Technol. 17(1), 91–100 (2011)

    Article  Google Scholar 

  13. Celebi, M.E.; Kingravi, H.A.; Iyatomi, H., et al.: Border detection in dermoscopy images using statistical region merging. Skin Res. Technol. 14(3), 347–353 (2008)

    Article  Google Scholar 

  14. Erkol, B.; Moss, R.H.; Joe, S.R.; Stoecker, W.V.; Hvatum, E.: Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Res. Technol. 11(1), 17–26 (2005)

    Article  Google Scholar 

  15. He, Y.; Xie, F.: Automatic skin lesion segmentation based on texture analysis and supervised learning. In:Asian Conference on Computer Vision, pp. 330–341. Springer (2012)

  16. Sadri, A.R.; Zekri, M.; Sadri, S., et al.: Segmentation of dermoscopy images using wavelet networks. IEEE Trans. Biomed. Eng. 60(4), 1134–1141 (2012)

    Article  Google Scholar 

  17. Al-Masni, M.A.; Al-Antari, M.A.; Choi, M.T.; Han, S.M.; Kim, T.S.: Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Comput. Methods Progr. Biomed. 162, 221–231 (2018)

    Article  Google Scholar 

  18. Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K. Q.: Densely Connected Convolutional Networks.In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4700–4708 (2016)

  19. Litjens, G.; Kooi, T.; Bejnordi, B.E., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  20. Long, J.; Shelhamer, E.; Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

  21. Noh, H.; Hong, S.; Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), IEEE Computer Society, pp. 1520–1528 (2015)

  22. Badrinarayanan, V.; Kendall, A.; Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  23. Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. In: 4th Deep Learning in Medical Image Analysis (DLMIA) and 8th Multimodal Learning for Clinical Decision Support (ML-CDS), pp. 3–11. Springer, Canada (2018)

    Google Scholar 

  24. Ronneberger, O.; Fischer, P.; Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 234–241. Springer, Berlin (2015)

    Google Scholar 

  25. Yu, F.; Koltun V.: Multi-scale context aggregation by dilated convolutions. CoRR abs/1511.07122 (2016)

  26. Zhao, H.;Shi, J.; Qi, X.; Wang, X.; Jia, J.: Pyramid scene parsing network. In: In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2881–2890 (2017)

  27. Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P.A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36(4), 994–1004 (2017)

    Article  Google Scholar 

  28. Bi, L.; Kim, J.; Ahn, E., et al.: Dermoscopic image segmentation via multistage fully convolutional networks. IEEE Trans. Biomed. Eng. 64(9), 2065–2074 (2017)

    Article  Google Scholar 

  29. Yuan, Y.: Automatic skin lesion segmentation with fully convolutional-deconvolutional networks. arXiv preprint arXiv:1703.05165 (2017)

  30. Tang, P.; Liang, Q.; Yan, X., et al.: Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging. Comput. Methods Programs Biomed. 178, 289–301 (2019)

    Article  Google Scholar 

  31. Hasan, M.K.; Dahal, L.; Samarakoon, P.N., et al.: DSNet: automatic dermoscopic skin lesion segmentation. Comput. Biolo Med 120, 103738 (2020)

    Article  Google Scholar 

  32. Öztürk, Ş; Özkaya, U.: Skin lesion segmentation with improved convolutional neural network. J. Digit. Imaging 33(4), 958–970 (2020)

    Article  Google Scholar 

  33. Xie, F.; Yang, J.; Liu, J., et al.: Skin lesion segmentation using high-resolution convolutional neural network. Comput. Methods Progr. Biomed 186, 105241 (2020)

    Article  Google Scholar 

  34. Pour, M.P.; Seker, H.: Transform domain representation-driven convolutional neural networks for skin lesion segmentation. Exp. Syst. Appl. 144, 113129 (2020)

    Article  Google Scholar 

  35. Zafar, K.; Gilani, S.O.; Waris, A.; Ahmed, A.; Jamil, M.; Khan, M.N.; Sohail Kashif, A.: Skin lesion segmentation from dermoscopic images using convolutional neural network. Sensors 20, 1601 (2020)

    Article  Google Scholar 

  36. Hafhouf, B.; Zitouni, A.; Megherbi, A.C.; Sbaa, S.: A Modified U-Net for Skin Lesion Segmentation. In: 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP), EL OUED, Algeria, pp. 225–228, IEEE (2020)

  37. Jiang, Y.; Cao, S.; Tao, S.; Zhang, H.: Skin lesion segmentation based on multi-scale attention convolutional neural network. IEEE Access 8, 122811–122825 (2020)

    Article  Google Scholar 

  38. Simonyan, K.; Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  39. Ioffe, S.; Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  40. Wang, P.; Chen, P.; Yuan, Y., et al.: Understanding convolution for semantic segmentation. arXiv preprint arXiv:1702.08502 (2017)

  41. Yu, F.; Koltun V.; Funkhouser, T.: Dilated residual networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 636–644 (2017)

  42. Dolz, J.; Xu, X.; Rony, J., et al.: Multiregion segmentation of bladder cancer structures in MRI with progressive dilated convolutional networks. Med. Phys. 45(12), 5482–5493 (2018)

    Article  Google Scholar 

  43. Wang, Z.; Ji, S.: Smoothed dilated convolutions for improved dense prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2486–2495 (2018)

  44. He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770- 778 (2016)

  45. Gutman, D.; Codella, N.C.; Celebi, M.E., et al.: Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1605.01397(2016)

  46. Codella, N.C.; Gutman, D.; Celebi, M.E., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 IEEE (2018)

  47. Mendonga, T.; Ferreira, P.M.; Marques, J.S.; Marcal, A.R.; Rozeira, J.: PH 2-A dermoscopic image database for research and benchmarking. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5437–5440 IEEE (2013)

  48. Kingma, D.P.; Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  49. Russakovsky, O.; Deng, J.; Su, H., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  50. He, K.; Zhang, X.; Ren, S.; Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classi- fication. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bellal Hafhouf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafhouf, B., Zitouni, A., Megherbi, A.C. et al. An Improved and Robust Encoder–Decoder for Skin Lesion Segmentation. Arab J Sci Eng 47, 9861–9875 (2022). https://doi.org/10.1007/s13369-021-06403-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06403-y

Keywords

Navigation