Skip to main content
Log in

Association of Probiotic Supplementation with Improvements in the Gut Microbes, Blood Lipid Profile and Caecal Villus Morphology of Broilers

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The effects of probiotic supplementation vary among species or strains, and the dose and feeding timeline could alter the intestinal environment of broilers. A fresh culture of Bacillus subtilis CE330 and multiple lactic acid bacteria (LAB) strains was administered to hatched broilers to investigate their synergistic and long-term effects. One-day-old Cobb broilers (n = 30) were randomly distributed into five groups (six chicks per group) and orally fed dH2O (control), B. subtilis CE330, or mixed cultures of B. subtilis CE330 and LAB at different doses and times. The simultaneous oral feeding B. subtilis CE330 and 4 LAB strains (ratio equal to 1:4) resulted in the best improvements in growth and health performance in broilers raised without antibiotics. The probiotic-fed group showed a 32.3% higher body weight gain and a 30.2% increase in high-density lipids. One of the 22 Bacillus-like isolates showed similar properties to B. subtilis CE330, including inhibition of bacterial pathogens, presence of the subtilosin gene, digestive enzyme activity, and antibiotic susceptibility. PCR-DGGE analysis revealed that the control group exhibited a diverse bacterial population of pathogen-related species that was not detected in the caecum of the B. subtilis CE330-fed group. The villus number and the morphology of the epithelial cells in the caecum were obviously increased and improved the nutrient adsorption in the probiotic-fed groups. The administration of three doses of a probiotic mixture early after hatching was sufficient for a long-term health benefit on broilers. The most effective probiotics could be further developed for the production of antibiotic-free broilers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CA4:

Enterococcus faecium CA4

CE330:

Bacillus subtilis CE330

CH24:

Lactobacillus salivarius CH24

CH33:

Enterococcus durans CH33

SH8:

Pediococcus acidilactici SH8

BS:

Bacillus subtilis CE330

BWG:

Body weight gain

CFU:

Colony-forming unit

CHL:

Cholesterol

DFMs:

Direct-fed microbials

HDL:

High-density lipid

LDL:

Low-density lipid

LAB:

Lactic acid bacteria

LB:

Luria-Bertani

MRS:

De Man, Rogosa and Sharpe

PCR-DGGE:

Polymerase chain reaction-denaturing gradient gel electrophoresis

SEM:

Scanning electron microscope

References

  1. Gadde, U.D.; Oh, S.; Lillehoj, H.S.; Lillehoj, E.P.: Antibiotic growth promoters virginiamycin and bacitracin methylene disalicylate alter the chicken intestinal metabolome. Sci. Rep. 8, 3592 (2018)

    Article  Google Scholar 

  2. Attia, Y.A.; Abd Al-Hamid, A.E.; Allakany, H.F.; Al-Harthi, M.A.; Mohamed, N.A.: Necessity of continuing of supplementation of non-nutritive feed additive during day 21–42 of age following three weeks of feeding aflatoxin to broiler chickens. J. Appl. Anim. Res. 44(1), 87–98 (2016). https://doi.org/10.1080/09712119.2015.1013964

    Article  Google Scholar 

  3. Kiarie, E.G.; Mills, A.: Role of feed processing on gut health and function in pigs and poultry: conundrum of optimal particle size and hydrothermal regimens. Front. Vet. Sci. 6, 19 (2019). https://doi.org/10.3389/fvets.2019.00019

    Article  Google Scholar 

  4. Al-Sagan, A.A.; AL-Yemni A.H.; Al-Abdullatif A.A.; Attia Y.A.; Hussein E.O.S.: Effects of different dietary levels of blue lupine (Lupinus angustifolius) seed meal with or without probiotics on the performance, carcass criteria, immune organs, and gut morphology of broiler chickens. Front. Vet. Sci. 7, 124 2020. https://doi.org/10.3389/fvets.2020.00124

  5. Fuller, R.: Probiotics in man and animals. J. Appl. Bacteriol. 66, 365–378 (1989)

    Article  Google Scholar 

  6. Patterson, J.A.; Burkholder, K.M.: Application of prebiotics and probiotics in poultry production. Poultry. Sci. 82(4), 627–631 (2003)

    Article  Google Scholar 

  7. Abd El-Hack, M. E.; El-Saadony, M.T.; Shafi, M.E.; Qattan, S.Y.A.; Batiha, G.E.; Khafaga, A.F.; Abdel-Moneim, A-M. E.; Alagawany, M.: Probiotics in poultry feed: A comprehensive review. J. Anim. Physiol. Anim. Nutr. 104, 1835–1850 (2020). https://doi.org/10.1111/jpn.13454

  8. Abdel-Moneim, A.-M.-E.; Selim, D.A.; Basuony, H.A.; Sabic, E.M.; Saleh, A.A.; Ebeid, T.A.: Effect of dietary supplementation of Bacillus subtilis spores on growth performance, oxidative status and digestive enzyme activities in Japanese quail birds. Trop. Anim. Health Product. 52(2), 671–680 (2020). https://doi.org/10.1007/s11250-019-02055-1

    Article  Google Scholar 

  9. La Ragione, R.M.; Casula, G.; Cutting, S.M.; Woodward, M.J.: Bacillus subtilis spores competitively exclude Escherichia coli O78: K80 in poultry. Vet. Microbiol. 79(2), 133–142 (2001)

    Article  Google Scholar 

  10. Jayaraman, S.; Thangavel, G.; Kurian, H.; Mani, R.; Mukkalil, R.; Chirakkal, H.: Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poultry Sci. 92(2), 370–374 (2013)

    Article  Google Scholar 

  11. Khochamit, N.; Siripornadulsil, S.; Sukon, P.; Siripornadulsil, W.: Bacillus subtilis and lactic acid bacteria improve the growth performance and blood parameters and reduce Salmonella infection in broilers. Vet. World. 13(12), 2663–2672 (2020). https://doi.org/10.14202/vetworld.2020.2663-2672

    Article  Google Scholar 

  12. Wu, B.Q.; Zhang, T.; Guo, L.Q.; Lin, J.F.: Effects of Bacillus subtilis KD on broiler intestinal flora. Poultry Sci. 90, 2493–2499 (2011). https://doi.org/10.3382/ps.2011-01529

    Article  Google Scholar 

  13. Ebeid, T.A.; Fathi, M.M.; Al-Homidan, I.; Ibrahim, Z.H.; Al-Saga, A.A.: Effect of dietary probiotics and stocking density on carcass traits, meat quality, microbial populations and ileal histomorphology in broilers under hot-climate conditions. Anim. Product. Sci. 59(9), 1711–1719 (2019). https://doi.org/10.1071/AN18353

    Article  Google Scholar 

  14. Jeni, R.E.; Dittoe, D.K.; Olson, E.G.; Lourenco, J.; Corcionivoschi, N.; Ricke, S.C.; Callaway, T.R.: Probiotics and potential applications for alternative poultry production systems. Poultry Sci. 100, 101156 (2021). https://doi.org/10.1016/j.psj.2021.101156

    Article  Google Scholar 

  15. Vieco-Saiz, N.; Belguesmia, Y.; Raspoet, R.; Auclair, E.; Gancel, F.; Kempf, I.; Drider, D.: Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Frontiers in Microbiol. 10, 57 (2019)

    Article  Google Scholar 

  16. Wu, X.Z.; Wen, Z.G.; Hua, J.L.: Effects of dietary inclusion of lactobacillus and inulin on growth performance, gut microbiota, nutrient utilization, and immune parameters in broilers. Poultry Sci. 98(10), 4656–4663 (2019). https://doi.org/10.3382/ps/pez166

    Article  Google Scholar 

  17. Chichlowski, M.; Croom, W.J.; Edens, F.W.; McBride, B.W.; Qiu, R.; Chiang, C.C.; Daniel, L.R.; Havenstein, G.B.; Koci, M.D.: Microarchitecture and spatial relationship between bacteria and ileal, cecal, and colonic epithelium in chicks fed a direct-fed microbial, PrimaLac, and salinomycin. Poultry Sci. 86(6), 1121–1132 (2007)

    Article  Google Scholar 

  18. Wang, J.; Muhammad, I.; Yuquan, G.; Chunli, C.; Jichang, L.: Assessment of probiotic properties of Lactobacillus salivarius isolated from chickens as feed additives. Frontiers Vet. Sci. 7, 415 (2020). https://doi.org/10.3389/fvets.2020.00415

    Article  Google Scholar 

  19. Hu, R.; Lin, H.; Wang, M.; Zhao, Y.; Liu, H.; Min, Y.; Yang, X.; Gao, Y.; Yang, M.: Lactobacillus reuteri-derived extracellular vesicles maintain intestinal immune homeostasis against lipopolysaccharide-induced inflammatory responses in broilers. J. Anim. Sci. Biotech. 12(1), 25 (2021). https://doi.org/10.1186/s40104-020-00532-4

    Article  Google Scholar 

  20. Buahom, J.; Siripornadulsil, S.; Siripornadulsil, W.: Feeding with single strains versus mixed cultures of lactic acid bacteria and Bacillus subtilis KKU213 affects the bacterial community and growth performance of broiler chickens. Arabian J. Sci. Eng. 43(7), 3417–3427 (2018)

    Article  Google Scholar 

  21. Wu, Y.P.; Wang, B.K.; Zeng, Z.H.; Liu, R.R.; Li, T.; Li, G.; Li, W.F.: Effects of probiotics Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 on intestinal barrier function, antioxidative capacity, apoptosis, immune response, and biochemical parameters in broilers. Poultry Sci. 98(10), 5028–5039 (2019). https://doi.org/10.3382/ps/pez226

    Article  Google Scholar 

  22. Castañeda, C.D.; Dittoe, D.K.; Wamsley, K.G.S.; McDaniel, C.D.; Blanch, A.; Sandvang, D.; Kiess, A.: In ovo inoculation of an Enterococcus faecium–based product to enhance broiler hatchability, live performance, and intestinal morphology. Poultry Sci. 99(11), 6163–6167 (2020). https://doi.org/10.1016/j.psj.2020.08.002

    Article  Google Scholar 

  23. Khochamit, N.; Duangjinda, M.; Siripornadulsil, S.; Wongtangtintharn, S.; Siripornadulsil, W.: Effects of dried yeast, a byproduct of the brewery industry, on the egg production and quality and the immune response of laying hens. Italian J. Anim. Sci. 2020(1), 1135–1146 (2021). https://doi.org/10.1080/1828051X.2021.1940322

    Article  Google Scholar 

  24. Reuben, R.C.; Sarkar, S.L.; Ibnat, H.; Setu, Md.A.A.; Roy, P.C.; Iqbal Kabir Jahid, I.K.: Novel multi-strain probiotics reduces Pasteurella multocida induced fowl cholera mortality in broilers. Sci. Rep. 11, 8885 (2021). https://doi.org/10.1038/s41598-021-88299-0

    Article  Google Scholar 

  25. Elshaghabee, F.M.; Rokana, N.; Gulhane, R.D.; Sharma, C.; Panwar, H.: Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol. 8, 1490 (2017)

    Article  Google Scholar 

  26. Khochamit, N.; Siripornadulsil, S,; Sukon, P.; Siripornadulsil, W.: Antibacterial activity and genotypic–phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain. Microbiol Res. 170, 36–50 (2015). https://doi.org/10.1016/j.micres.2014.09.004

  27. Muyzer, G.; de Waal, E.C.; Uitterlinden, A.G.: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993)

    Article  Google Scholar 

  28. Zhang, B.; Dong, C.; Li, S.; Song, X.; Wei, W.; Liu, L.: Triglyceride to high-density lipoprotein cholesterol ratio is an important determinant of cardiovascular risk and poor prognosis in coronavirus disease-19: A retrospective case series study. Diabetes Metabol. Syn. Obes. Targets The. 2020(13), 3925–3936 (2020)

    Article  Google Scholar 

  29. Jazi, V.; Foroozandeh, A.D.; Toghyani, M.; Dastar, B.; Koochaksaraie, R.; Toghyani, M.: Effects of Pediococcus acidilactici, mannan-oligosaccharide, butyric acid and their combination on growth performance and intestinal health in young broiler chickens challenged with Salmonella Typhimurium. Poultry Sci. 97(6), 2034–2043 (2018)

    Article  Google Scholar 

  30. Pourabedin, M.; Chen, Q.; Yang, M.; Zhao, X.: Mannan-and xylooligosaccharides modulate caecal microbiota and expression of inflammatory-related cytokines and reduce caecal Salmonella Enteritidis colonisation in young chickens. FEMS Microbiol Eco. 93(1), fiw226 (2017)

  31. Prado-Rebolledo, O.F.; Delgado-Machuca, J.D.J.; Macedo-Barragan, R.J.; Garcia-Márquez, L.J.; Morales-Barrera, J.E.; Latorre, J.D.; Hernandez-Velasco, X.; Tellez, G.: Evaluation of a selected lactic acid bacteria-based probiotic on Salmonella enterica serovar Enteritidis colonization and intestinal permeability in broiler chickens. Avian Pathol. 46(1), 90–94 (2017)

    Article  Google Scholar 

  32. Wang, X.; Farnell, Y.Z.; Peebles, E.D.; Kiess, A.S.; Wamsley, K.G.S.; Zhai, W.: Effects of prebiotics, probiotics, and their combination on growth performance, small intestine morphology, and resident Lactobacillus of male broilers. Poultry Sci. 95(6), 1332–1340 (2016)

    Article  Google Scholar 

  33. Lei, X.J.; Ru, Y.J.; Zhang, H.F.: Effect of Bacillus amyloliquefaciens-based direct-fed microbials and antibiotic on performance, nutrient digestibility, cecal microflora, and intestinal morphology in broiler chickens. J. Appl. Poultry Res. 23(3), 486–493 (2014)

    Article  Google Scholar 

  34. Jacquier, V.; Nelson, A.; Jlali, M.; Rhayat, L.; Brinch, K.S.; Devillard, E.: Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomorphology and animal performance. Poultry Sci. 98(6), 2548–2554 (2019)

    Article  Google Scholar 

  35. Sokale, A.O.; Menconi, A.; Mathis, G.F.; Lumpkins, B.; Sims, M.D.; Whelan, R.A.; Doranalli, K.: Effect of Bacillus subtilis DSM 32315 on the intestinal structural integrity and growth performance of broiler chickens under necrotic enteritis challenge. Poultry Sci. 98(11), 5392–5400 (2019)

    Article  Google Scholar 

  36. Elmi, V.A.; Moradi, S.; Harsini, S.G.; Rahimi, M.: Effects of Lactobacillus acidophilus and natural antibacterials on growth performance and Salmonella colonization in broiler chickens challenged with Salmonella enteritidis. Livestock Sci. 233, 103948 (2020)

    Article  Google Scholar 

  37. Hussein, E.; Selim, S.: Efficacy of yeast and multi-strain probiotic alone or in combination on growth performance, carcass traits, blood biochemical constituents, and meat quality of broiler chickens. Livestock Sci. 216, 153–159 (2018)

    Article  Google Scholar 

  38. Attia, Y.A.; Al-Khalaifah H,; Abd El-Hamid, H.S.; Al-Harthi, M.A.; El-shafey, A.A.: Effect of different levels of multienzymes on immune response, blood hematology and biochemistry, antioxidants status and organs histology of broiler chicks fed standard and low-density diets. Front Vet Sci. 6, 510 (2020). https://doi.org/10.3389/fvets.2019.00510

  39. Torshizi, M.A.K.; Moghaddam, A.R.; Rahimi, Sh.; Mojgani, N.: Assessing the effect of administering probiotics in water or as a feed supplement on broiler performance and immune response. Br. Poultry Sci. 51, 178–184 (2010). https://doi.org/10.1080/00071661003753756

    Article  Google Scholar 

  40. Waters, S.M.; Murphy, R.A.; Power, R.F.: Characterisation of prototype Nurmi cultures using culture-based microbiological techniques and PCR-DGGE. Int. J. Food Microbiol. 110(3), 268–277 (2006)

    Article  Google Scholar 

  41. Barbosa, T.M.; Serra, R.C.; Ragione, R.M.; Woodward, M.J.; Henriques, A.O.: Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl. Environ. Microbiol. 71(2), 968–978 (2005)

    Article  Google Scholar 

  42. Cutting, S.M.: Bacillus probiotics. Food Microbiol. 28, 214–220 (2011). https://doi.org/10.1016/j.fm.2010.03.007

    Article  Google Scholar 

  43. Al-Fataftah, A.R.; Abdelqader, A.: Effects of dietary Bacillus subtilis on heat-stressed broilers performance, intestinal morphology and microflora composition. Anim. Feed Sci. Tech. 198, 279–285 (2014)

    Article  Google Scholar 

  44. Awad, W.A.; Ghareeb, K.; Böhm, J.: Effect of addition of a probiotic microorganism to broiler diet on intestinal mucosal architecture and electrophysiological parameters. J. Anim. Physiol. Anim. Nutri. 94(4), 486–494 (2010)

    Article  Google Scholar 

  45. Attia, Y.A.; Al-Harthi, M.A.; El-Shafey, A.S.; Rehab, Y.A.; Kim, W.K.: Enhancing tolerance of broiler chickens to heat stress by supplementation with vitamin E, vitamin C and/or probiotics. Ann. Anim. Sci. 17(4), 1–15 (2017). https://doi.org/10.1515/aoas-2017-0012

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Kuru Aood Farm for supporting the animal experiment, Peerapol Sukon for providing animal care supervision, and Miss Alisa Naladta for the assistance provided with the PCR-DGGE technique. This study was supported by the Royal Golden Jubilee (RGJ) Ph.D. Program and the Thailand Research Fund (TRF) (No. 4.M.KK/58/B.1.N.XX to Nalisa Khochamit and PHD/0069/2558 to Wilailak Siripornadulsil). This project was partly funded by the National Research Council of Thailand (NRCT; NRCT5-RSA63003-02 to Wilailak Siripornadulsil).

Funding

Royal Golden Jubilee (RGJ) Ph.D. Programme, 4.M.KK/58/B.1.N.XX, Nalisa Khochamit, PHD/0069/2558, Wilailak Siripornadulsil, National Research Council of Thailand, NRCT5-RSA63003-02, Wilailak Siripornadulsil

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilailak Siripornadulsil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khochamit, N., Buahom, J., Siripornadulsil, S. et al. Association of Probiotic Supplementation with Improvements in the Gut Microbes, Blood Lipid Profile and Caecal Villus Morphology of Broilers. Arab J Sci Eng 47, 6807–6819 (2022). https://doi.org/10.1007/s13369-021-06390-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06390-0

Keywords

Navigation