Skip to main content
Log in

An Artificial Neural Network Model for Predicting the Hydrate Formation Temperature

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Gas hydrate is one of the crucial flow assurance problems in the petroleum industry. Inaccurate predictions of gas-hydrate conditions could lead to severe technical and economic defects especially when results in plugging the gas streamline. The prediction techniques could be classified into six approaches relevant to pure and complex hydrocarbon mixtures. Up till now, many correlations have been developed to cover the hydrate formation conditions point; however, most of these correlations are presented graphically that which makes them incompatible with computer simulation packages. Furthermore, by reviewing the literature, the previous artificial neural networks have a deficiency in providing the corresponding mathematical model to be employed to reproduce results using other data points or to be compared to other developed artificial neural network (ANN) models. The main purpose of this paper is to develop a comprehensive ANN model with its corresponding mathematical model to facilitate the prediction of gas-hydrate formation temperature in the case of natural gas-pure water systems. In addition to the mathematical model, a MATLAB code and a standalone computer program are also established to provide a high degree of compatibility with simulation and design software packages. The ANN model was built based on (1469) datasets of gas-hydrate formation pressure, temperature, and specific gravity, and the data points are captured from Katz's (Transactions of the AIME 160:140–9, 1945) gravity chart. The proposed model achieves a coefficient of determination equal to (0.999), with an average relative error of (− 0.0005%), the average absolute relative error of (0.1145%), root mean square error (0.073), and standard deviation of (0.00398).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

N :

Number of neurons

HFT:

Hydrate formation temperature

HFP:

Hydrate formation pressure

\(y_{i}\) :

Mole fraction of ith hydrocarbon component exists in the gas phase on a water-free basis

\(x_{i}\) :

Mole fraction of ith hydrocarbon component exists in the solid phase on a water-free basis

R 2 :

Coefficient of determination

R :

Correlation coefficient

ARE:

Average relative error

AARE:

Average absolute relative error

\(\gamma_{g}\) :

Gas specific gravity

MSE:

Mean square error

RMSE:

Root mean square error

LM:

Levenberg–Marquardt (Training algorithm)

°C:

Celsius

°F:

Fahrenheit

R:

Rankin

KPa:

Kilopascal

MPa:

Megapascal

Atm:

Atmospheric pressure

Psi:

Pound per square inch

T n :

Normalized

References

  1. Wang, Z.; Bai, Y.; Zhang, H.; Liu, Y.: Investigation on gelation nucleation kinetics of waxy crude oil emulsions by their thermal behavior. J. Pet. Sci. Eng. 181, 106230 (2019)

    Article  Google Scholar 

  2. Wang, Z.; Liu, Y.; Li, J.; Zhuge, X.; Zhang, L.: Study on two-phase oil–water gelling deposition behavior in low-temperature transportation. Energy Fuels 30(6), 4570–4582 (2016)

    Article  Google Scholar 

  3. Wang, Z.; Liu, X.; Luo, H.; Peng, B.; Sun, X.; Liu, Y., et al.: Foaming properties and foam structure of produced liquid in alkali/surfactant/polymer flooding production. J. Energy Resour. Technol. 143(10), 103005 (2021)

    Article  Google Scholar 

  4. Olajire A.A.: Flow assurance issues in deep-water gas well testing and mitigation strategies with respect to gas hydrates deposition in flowlines—a review. J. Mol. Liq. 114203 (2020)

  5. Jamaluddin, A.; Kabir, C.: Flow assurance: managing flow dynamics and production chemistry. J. Pet. Sci. Eng 100, 106–116 (2012)

    Article  Google Scholar 

  6. Lashkarbolooki, M.; Ayatollahi, S.; Riazi, M.: The impacts of aqueous ions on interfacial tension and wettability of an asphaltenic–acidic crude oil reservoir during smart water injection. J. Chem. Eng. Data 59(11), 3624–3634 (2014)

    Article  Google Scholar 

  7. El-Hoshoudy, A.; Desouky, S.; Al-Sabagh, A.; Betiha, M.; My, E.-K.; Mahmoud, S.: Evaluation of solution and rheological properties for hydrophobically associated polyacrylamide copolymer as a promised enhanced oil recovery candidate. Egypt. J. Pet. 26(3), 779–785 (2017)

    Article  Google Scholar 

  8. El-Hoshoudy, A.: Quaternary ammonium based surfmer-co-acrylamide polymers for altering carbonate rock wettability during water flooding. J. Mol. Liq. 250, 35–43 (2018)

    Article  Google Scholar 

  9. El-Hoshoudy, A.: Synthesis of acryloylated starch-g-poly acrylates crosslinked polymer functionalized by emulsified vinyltrimethylsilane derivative as a novel EOR agent for severe polymer flooding strategy. Int. J. Biol. Macromol. 123, 124–132 (2019)

    Article  Google Scholar 

  10. Sloan, E.D.: Natural gas hydrates in flow assurance. Gulf Professional Publishing, Texas (2010)

    Google Scholar 

  11. Ahmed, T.: Reservoir engineering handbook. Gulf professional publishing, Texas (2018)

    Google Scholar 

  12. Bavoh, C.B.; Nashed, O.; Khan, M.S.; Partoon, B.; Lal, B.; Sharif, A.M.: The impact of amino acids on methane hydrate phase boundary and formation kinetics. J. Chem. Thermodyn. 117, 48–53 (2018)

    Article  Google Scholar 

  13. Cha, M.; Shin, K.; Kim, J.; Chang, D.; Seo, Y.; Lee, H., et al.: Thermodynamic and kinetic hydrate inhibition performance of aqueous ethylene glycol solutions for natural gas. Chem. Eng. Sci. 99, 184–190 (2013)

    Article  Google Scholar 

  14. May, E.F.; Wu, R.; Kelland, M.A.; Aman, Z.M.; Kozielski, K.A.; Hartley, P.G., et al.: Quantitative kinetic inhibitor comparisons and memory effect measurements from hydrate formation probability distributions. Chem. Eng. Sci. 107, 1–12 (2014)

    Article  Google Scholar 

  15. Ma’mun, S.; Jakobsen, J.P.; Svendsen, H.F.; Juliussen, O.: Experimental and modeling study of the solubility of carbon dioxide in aqueous 30 mass% 2-((2-aminoethyl) amino) ethanol solution. Ind. Eng. Chem. Res. 45(8), 2505–2512 (2006)

    Article  Google Scholar 

  16. Ameripour, S.; Barrufet, M.: Improved correlations predict hydrate formation pressures or temperatures for systems with or without inhibitors. J. Can. Pet. Technol. 48(05), 45–50 (2009)

    Article  Google Scholar 

  17. Yarveicy, H.; Ghiasi, M.M.; Mohammadi, A.H.: Determination of the gas hydrate formation limits to isenthalpic Joule-Thomson expansions. Chem. Eng. Res. Des. 132, 208–214 (2018)

    Article  Google Scholar 

  18. Sahith, S.A.K.; Pedapati, S.R.; Lal, B.: Application of artificial neural networks on measurement of gas hydrates in pipelines. Test Eng. Manag. 81, 5769–5774 (2019)

    Google Scholar 

  19. Rebai, N.; Hadjadj, A.; Benmounah, A.; Berrouk, A.S.; Boualleg, S.M.: Prediction of natural gas hydrates formation using a combination of thermodynamic and neural network modeling. J Pet Sci Eng 182, 106270 (2019)

    Article  Google Scholar 

  20. Olabisi O.T.; Atubokiki A.J.; Babawale O.: Artificial neural network for prediction of hydrate formation temperature. In: SPE Nigeria Annual International Conference and Exhibition. Society of Petroleum Engineers (2019)

  21. Ghayyem, M.A.; Ghanavati Nasab, A.; Zare Khormizi, M.; Rostami, M.: Predicting the conditions for gas hydrate formation. Pet Sci Technol 37(16), 1855–1860 (2019)

    Article  Google Scholar 

  22. Mesbah, M.; Soroush, E.; Rezakazemi, M.: Development of a least squares support vector machine model for prediction of natural gas hydrate formation temperature. Chin. J. Chem. Eng. 25(9), 1238–1248 (2017)

    Article  Google Scholar 

  23. Mesbah M.; Habibnia S.; Ahmadi S.; Dehaghani A.H.S.; Bayat S. Developing a robust correlation for prediction of sweet and sour gas hydrate formation temperature. Petroleum (2020)

  24. Mehrizadeh, M.: Prediction of gas hydrate formation using empirical equations and data-driven models. Mater. Today Proc. 42, 1592–1598 (2021)

    Article  Google Scholar 

  25. Fatourehchi N.; Mashayekhi Z.; Galooyak S.S.; Masoumi M.: Prediction of gas hydrate formation temperature in the presence of methanol inhibitor in gas pipeline using artificial intelligence (AI) and genetic algorithm (GA). Pet. Coal 61(6) (2019)

  26. Khanna A.; Burla R.; Patwardhan S.: Empirical correlations for quick and accurate hydrate formation prediction-which one to apply?. In: SPE Oil and Gas India Conference and Exhibition. Society of Petroleum Engineers (2019)

  27. Hammerschmidt, E.: Formation of gas hydrates in natural gas transmission lines. Ind. Eng. Chem. 26(8), 851–855 (1934)

    Article  Google Scholar 

  28. Wilcox, W.I.; Carson, D.B.; Katz, D.: Natural gas hydrates. Ind. Eng. Chem. 33(5), 662–665 (1941)

    Article  Google Scholar 

  29. Carson, D.B.; Katz, D.L.: Natural gas hydrates. Trans. AIME 146(01), 150–158 (1942)

    Article  Google Scholar 

  30. Elgibaly, A.A.; Elkamel, A.M.: A new correlation for predicting hydrate formation conditions for various gas mixtures and inhibitors. Fluid Phase Equilib. 152(1), 23–42 (1998)

    Article  Google Scholar 

  31. Katz, D.L.: Prediction of conditions for hydrate formation in natural gases. Trans. AIME 160(01), 140–149 (1945)

    Article  Google Scholar 

  32. Makogon, I.F.; Makogon, I.U.R.F.; Makogon, Y.F.: Hydrates of Hydrocarbons. Pennwell Books, Tennessee (1997)

    MATH  Google Scholar 

  33. Berge B.: Hydrate predictions on a microcomputer. In: Petroleum Industry Application of Microcomputers. Society of Petroleum Engineers (1986)

  34. Kobayashi, R.; Song, K.Y.; Sloan, E.D.: Phase behavior of water/hydrocarbon systems. Pet. Eng. Handb. 25, e13 (1987)

    Google Scholar 

  35. Motiee, M.: Estimate possibility of hydrates. Hydrocarb. Process. 70(7), 98–99 (1991)

    Google Scholar 

  36. Towler, B.; Mokhatab, S.: Quickly estimate hydrate formation conditions in natural gases. Hydrocarb. Process. 84(4), 61–62 (2005)

    Google Scholar 

  37. Bahadori, A.; Vuthaluru, H.B.: A novel correlation for estimation of hydrate forming condition of natural gases. J. Nat. Gas Chem. 18(4), 453–457 (2009)

    Article  Google Scholar 

  38. Salufu S.O.; Nwakwo P.: New empirical correlation for predicting hydrate formation conditions. In: SPE nigeria annual international conference and exhibition. OnePetro (2013)

  39. Riazi, S.H.; Heydari, H.; Ahmadpour, E.; Gholami, A.; Parvizi, S.: Development of novel correlation for prediction of hydrate formation temperature based on intelligent optimization algorithms. J. Nat. Gas Sci. Eng. 18, 377–384 (2014)

    Article  Google Scholar 

  40. Waals, J.V.D.; Platteeuw, J.: Clathrate solutions. Adv Chem Phys 2, 1–57 (1958)

    Google Scholar 

  41. Khamehchi E.; Shamohammadi E; Yousefi SH.: Predicting the hydrate formation temperature by a new correlation and neural network. (2013)

  42. Gomaa S.; Emara R.; Mahmoud O.; El-Hoshoudy A.: New correlations to calculate vertical sweep efficiency in oil reservoirs using nonlinear multiple regression and artificial neural network. J. King Saud Univ.-Eng. Sci. (2021)

  43. Hamed, M.M.; Khalafallah, M.G.; Hassanien, E.A.: Prediction of wastewater treatment plant performance using artificial neural networks. Environ. Model Softw. 19(10), 919–928 (2004)

    Article  Google Scholar 

  44. Hinton, G.E.; Osindero, S.; Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gouda A.; Gomaa S.; Attia A.; Emara R.; Desouky S.; El-hoshoudy A.: Development of an artificial neural network model for predicting the dew point pressure of retrograde gas condensate. J. Pet. Sci. Eng. 109284 (2021)

  46. Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S.: Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput. Chem. 26(1), 5–14 (2001)

    Article  Google Scholar 

  47. Al-Anazi, A.; Gates, I.: A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs. Eng. Geol. 114(3–4), 267–277 (2010)

    Article  Google Scholar 

  48. Ullah, Q.Z.; Khan, G.M.; Hassan, S.; Iqbal, A.; Ullah, F.; Kwak, K.S.: A cartesian genetic programming based parallel neuroevolutionary model for cloud server’s CPU usage prediction. Electronics 10(1), 67 (2021)

    Article  Google Scholar 

  49. El-Hoshoudy, A.; Farag, A.; Ali, O.; El-Batanoney, M.; Desouky, S.; Ramzi, M.: New correlations for prediction of viscosity and density of Egyptian oil reservoirs. Fuel 112, 277–282 (2013)

    Article  Google Scholar 

  50. El-Hoshoudy, A.; Desouky, S.; Betiha, M.; Abdelraouf, S.; Elaily, M.: Mathematical correlation predicting stock tank oil density for Egyptian crude oils at standard conditions. Int. J. Oil Gas Coal Eng. 2(4), 55–58 (2014)

    Article  Google Scholar 

  51. Ali Ghayyem, M.; Izadmehr, M.; Tavakoli, R.: Developing a simple and accurate correlation for initial estimation of hydrate formation temperature of sweet natural gases using an eclectic approach. J. Nat. Gas Sci. Eng. 21, 184–192 (2014)

    Article  Google Scholar 

  52. Majidi, S.M.J.; Shokrollahi, A.; Arabloo, M.; Mahdikhani-Soleymanloo, R.; Masihi, M.: Evolving an accurate model based on machine learning approach for prediction of dew-point pressure in gas condensate reservoirs. Chem. Eng. Res. Des. 92(5), 891–902 (2014)

    Article  Google Scholar 

  53. Najafi-Marghmaleki, A.; Tatar, A.; Barati-Harooni, A.; Arabloo, M.; Rafiee-Taghanaki, S.; Mohammadi, A.H.: Reliable modeling of constant volume depletion (CVD) behaviors in gas condensate reservoirs. Fuel 231, 146–156 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. El-hoshoudy.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 284 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-hoshoudy, A.N., Ahmed, A., Gomaa, S. et al. An Artificial Neural Network Model for Predicting the Hydrate Formation Temperature. Arab J Sci Eng 47, 11599–11608 (2022). https://doi.org/10.1007/s13369-021-06340-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06340-w

Keywords

Navigation