Skip to main content

Advertisement

Log in

Enhanced Border and Hole Detection for Energy Utilization in Wireless Sensor Networks

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Identification and repairing holes in ireless sensor networks (WSNs) are challenging with full and low complexity. A local healing approach based on distributed virtual forces will make the healing area of the hole possible. The construction of repairing design is a locally allocated and constructed methodology that will enhance the coverage area in WSNs. In this paper, an enhanced border and hole detection (EBHD) algorithm is proposed for the energy containment of WSN. The performance of the proposed EBHD methodology is compared with those of the existing methods through Network Simulator 2 (NS2). The simulation results prove that the proposed EBHD achieves a high packet reception ratio while improving the residual energy and reducing end-to-end delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fu, X.; Yao, H.; Yang, Y.: Cascading failures in wireless sensor networks with load redistribution of links and nodes. Ad Hoc Netw. 93, 101900 (2019)

    Article  Google Scholar 

  2. Santhana Krishnan, R.; Julie, E.G.; Robinson, Y.H.; Son, L.H.; Kumar, R.; Abdel-Basset, M.; Thong, P.H.: A new algorithm for high power node multicasting in wireless sensor networks. IEEE Access 7, 38584–38592 (2019)

    Article  Google Scholar 

  3. Mohindru, V.; Bhatt, R.; Singh, Y.: Reauthentication scheme for mobile wireless sensor networks. Sustain. Comput. Inform. Syst. 23, 158–166 (2019)

    Google Scholar 

  4. Robinson, Y.H.; Santhana Krishnan, R.; Julie, E.G.; Kumar, R.; Son, L.H.; Thong, P.H.: Neighbor knowledge-based rebroadcast algorithm for minimizing the routing overhead in mobile Ad-hoc networks. Ad Hoc Netw (2019). https://doi.org/10.1016/j.adhoc.2019.101896

    Article  Google Scholar 

  5. Parras, J.; Zazo, S.: Learning attack mechanisms in wireless sensor networks using markov decision processes. Expert Syst. Appl. 122(15), 376–387 (2019)

    Article  Google Scholar 

  6. Harold Robinson, Y.; Balaji, S.; Julie, E.G.: FPSOEE: Fuzzy-enabled particle swarm optimization-based energy-efficient algorithm in mobile ad-hoc networks. J. Intell. Fuzzy Syst. 36(4), 3541–3553 (2019)

    Article  Google Scholar 

  7. Sun, Z.; Liu, Y.; Tao, Li.: Attack localization task allocation in wireless sensor networks based on multi-objective binary particle swarm optimization. J. Netw. Comput. Appl. 112(15), 29–40 (2018)

    Article  Google Scholar 

  8. Bhatt, R.; Maheshwary, P.; Shukla, P.; Shukla, P.; Shrivastava, M.; Changlani, S.: Implementation of fruit fly optimization algorithm (FFOA) to escalate the attacking efficiency of node capture attack in Wireless Sensor Networks (WSN). Computer Commun. 149, 134–145 (2020)

    Article  Google Scholar 

  9. Khedr, A.M.; Osamy, W.; Salim, A.: Distributed coverage hole detection and recovery scheme for heterogeneous wireless sensor networks. Computer Commun. 124, 61–75 (2018)

    Article  Google Scholar 

  10. Robinson, Y.H.; Julie, E.G.; Balaji, S.; Ayyasamy, A.: Energy aware clustering scheme in wireless sensor network using neuro-fuzzy approach. Wireless Pers. Commun. 95(2), 703–721 (2017)

    Article  Google Scholar 

  11. Han, L.; Zhou, M.; Jia, W.; Dalil, Z.; Xingbo, Xu.: Intrusion detection model of wireless sensor networks based on game theory and an autoregressive model. Inf. Sci. 476, 491–504 (2019)

    Article  Google Scholar 

  12. Robinson, Y.H.; Julie, E.G.; Kumar, R.; Son, L.H.: Probability-based cluster head selection and fuzzy multipath routing for prolonging lifetime of wireless sensor networks. Appl. Peer-to-Peer Netw. (2019). https://doi.org/10.1007/s12083-019-00758-8

    Article  Google Scholar 

  13. López, M.; Peinado, A.; Ortiz, A.: An extensive validation of a SIR epidemic model to study the propagation of jamming attacks against IoT wireless networks. Computer Netw. 165, 106945 (2019)

    Article  Google Scholar 

  14. Oh, S.; Cho, H.; Kim, S.-H.; Lee, W.; Lee, E.: Continuous object tracking protocol with selective wakeup based on practical boundary prediction in wireless sensor networks. Computer Netw. 162, 106854 (2019)

    Article  Google Scholar 

  15. Golden Julie, E.; Tamilselvi, S.; Harold Robinson, Y.: Performance analysis of energy efficient virtual back bone path based cluster routing protocol for WSN. Wireless Pers. Commun. 91(3), 1171–1189 (2016)

    Article  Google Scholar 

  16. Phoemphon, S.; So-In, C.; Leelathakul, N.: A hybrid localization model using node segmentation and improved particle swarm optimization with obstacle-awareness for wireless sensor networks. Expert Syst. Appl. 143, 113044 (2020)

    Article  Google Scholar 

  17. Sun, Z.; Wei, M.; Zhang, Z.; Gang, Qu.: Secure routing protocol based on multi-objective ant-colony-optimization for wireless sensor networks. Appl. Soft Comput. 77, 366–375 (2019)

    Article  Google Scholar 

  18. Deebak, B.D.; Al-Turjman, F.: A hybrid secure routing and monitoring mechanism in IoT-based wireless sensor networks. Ad Hoc Netw. 97, 102022 (2020)

    Article  Google Scholar 

  19. Yi, L.; Deng, X.; Zou, Z.; Ding, D.; Yang, L.T.: Confident information coverage hole detection in sensor networks for uranium tailing monitoring. J. Parallel Distrib. Comput. 118, 57–66 (2018)

    Article  Google Scholar 

  20. YH Robinson EG Julie K Saravanan R Kumar LH Son 2019 FD-AOMDV: fault-tolerant disjoint ad-hoc on-demand multipath distance vector routing algorithm in mobile ad-hoc networks J. Humaniz. Comput. Ambient Intell. https://doi.org/10.1007/s12652-018-1126-3

  21. Le Nguyen, P.; Nguyen, K.; Vu, H.; Ji, Y.: TELPAC: a time and energy efficient protocol for locating and patching coverage holes in WSNs. J. Netw. Computer Appl. 147, 102439 (2019)

    Article  Google Scholar 

  22. Etancelin, J.-M.; Fabbri, A.; Guinand, F.; Rosalie, M.: DACYCLEM: a decentralized algorithm for maximizing coverage and lifetime in a mobile wireless sensor network. Ad Hoc Netw. 87(1), 174–187 (2019)

    Article  Google Scholar 

  23. Prithi, S.; Sumathi, S.: LD2FA-PSO: a novel learning dynamic deterministic finite automata with PSO algorithm for secured energy efficient routing in wireless sensor network. Ad Hoc Netw. 97, 102024 (2020)

    Article  Google Scholar 

  24. Kalaivanan, K.; Bhanumathi, V.: Reliable location aware and Cluster-Tap Root based data collection protocol for large scale wireless sensor networks. J. Netw. Computer Appl. 118, 83–101 (2018)

    Article  Google Scholar 

  25. Kumar, P.; Chaturvedi, A.: Fuzzy-interval based probabilistic query generation models and fusion strategy for energy efficient wireless sensor networks. Comput. Commun. 117, 46–57 (2018)

    Article  Google Scholar 

  26. Xie, J., Xiong, Z., Dai, Q., Wang, X., Zhang, Y.: A local-gravitation-based method for the detection of outliers and boundary points, Knowledge-Based Systems, In press, corrected proof, Available online 6 December 2019, Article 105331

  27. Khelil, A.; Beghdad, R.; Khelloufi, A.: 3HA: hybrid hole healing algorithm in a wireless sensor networks. Wireless Pers. Commun. 112, 587–605 (2020). https://doi.org/10.1007/s11277-020-07062-2

    Article  Google Scholar 

  28. ZainEldin, H.; Badawy, M.; Elhosseini, M., et al.: An improved dynamic deployment technique based-on genetic algorithm (IDDT-GA) for maximizing coverage in wireless sensor networks. J. Ambient Intell. Human Comput. (2020). https://doi.org/10.1007/s12652-020-01698-5

    Article  Google Scholar 

  29. Hadikhani, P.; Eslaminejad, M.; Yari, M., et al.: An energy-aware and load balanced distributed geographic routing algorithm for wireless sensor networks with dynamic hole. Wireless Netw. (2019). https://doi.org/10.1007/s11276-019-02157-6

    Article  Google Scholar 

  30. Balaji, S.; Golden Julie, E.; Harold Robinson, Y.: Development of fuzzy based energy efficient cluster routing protocol to increase the lifetime of wireless sensor networks. Mobile Netw. Appl. 24(2), 394–406 (2019)

    Article  Google Scholar 

  31. Feng, X.; Zhang, X.; Zhang, J.; Muhdhar, A.A.: A coverage hole detection and repair algorithm in wireless sensor networks. Cluster Comput. 22, 12473–12480 (2019)

    Article  Google Scholar 

  32. Yan, F., Ma, W., Shen, F., Xia, W., Shen, L.: Connectivity based k-coverage hole detection in wireless sensor networks Mobile Netw. Appl. 1–11 (2019)

  33. Mehta, D.; Saxena, S.: MCH-EOR: multi-objective cluster head based energy-aware optimized routing algorithm in wireless sensor networks. Sustain. Comput. Inform. Syst. 28, 100406 (2020)

    Google Scholar 

  34. Banerjee, P.S.; Mandal, S.N.; De, D.; Maiti, B.: RL-Sleep: temperature adaptive sleep scheduling using reinforcement learning for sustainable connectivity in wireless sensor networks. Sustain. Comput. Inform. Syst. 26, 100380 (2020)

    Google Scholar 

  35. Naghibi, M.; Barati, H.: EGRPM: energy efficient geographic routing protocol based on mobile sink in wireless sensor networks. Sustain. Comput. Inform. Syst. 25, 100377 (2020)

    Google Scholar 

  36. Rajput, A.; Kumaravelu, V.B.: Scalable and sustainable wireless sensor networks for agricultural application of Internet of things using fuzzy c-means algorithm. Sustain. Comput. Inform. Syst. 22, 62–74 (2019)

    Google Scholar 

  37. Harold Robinson, Y.; Golden Julie, E.; Saravanan, K.; Son, L.H.; Kumar, R.; Abdel-Basset, M.; Thong, P.H.: Link-disjoint multipath routing for network traffic overload handling in mobile Ad-hoc networks. IEEE Access 7(1), 143312–143323 (2019)

    Article  Google Scholar 

  38. Balaji, S.; Julie, E.G.; Robinson, Y.H.; Kumar, R.; Thong, P.H.; Son, L.H.: Design of a security-aware routing scheme in mobile Ad-hoc network using repeated game model. Computer Stand. Interfaces 66, 103358–103368 (2019)

    Article  Google Scholar 

  39. Sahu, D.; Singh, K.; Manju, M.; Taniar, D.; Tuan, L.M.; Son, L.H.; Abdel-Basset, M.; Long, H.V.: Heuristic search based localization in mobile computational grid. IEEE Access 7, 78652–78664 (2019)

    Article  Google Scholar 

  40. Harold Robinson, Y.; Santhana Krishnan, R.; Golden Julie, E.; Kumar, R.; Son, L.H.; Thong, P.H.: Neighbor knowledge-based rebroadcast algorithm for minimizing the routing overhead in mobile Ad-hoc networks. Ad Hoc Netw. 93, 101896–101909 (2019)

    Article  Google Scholar 

  41. Khan, T.; Singh, K.; Son, L.H.; Abdel-Basset, M.; Long, H.V.; Singh, S.P.; Manjul, M.: A novel and comprehensive trust estimation clustering based approach for large scale wireless sensor networks. IEEE Access 7, 58221–58240 (2019)

    Article  Google Scholar 

  42. Harold Robinson, Y.; Golden Julie, E.; Kumar, R.; Son, L.H.: Probability-based cluster head selection and fuzzy multipath routing for prolonging lifetime of wireless sensor networks. Peer-to-Peer Netw. Appl. 12(5), 1061–1075 (2019)

    Article  Google Scholar 

  43. Santhana Krishnan, R.; Golden Julie, E.; Harold Robinson, Y.; Son, L.H.; Kumar, R.; Abdel-Basset, M.; Thong, P.H.: A new algorithm for high power node multicasting in wireless sensor networks. IEEE Access 7, 38584–38592 (2019)

    Article  Google Scholar 

  44. Balamane, A.: Scalable biclustering algorithm considers the presence or absence of properties. Int. J. Data Warehous. Min. (IJDWM) 17(1), 39–56 (2021)

    Article  Google Scholar 

  45. Giang, N.L.; Tuan, N.A.; Ngan, T.T.; Son, N.N.; Thang, N.T.: Filter-wrapper incremental algorithms for finding reduct in incomplete decision systems when adding and deleting an attribute set. Int. J. Data Warehous. Min. (IJDWM) 17(2), 39–62 (2021)

    Article  Google Scholar 

  46. Cicioğlu, M.; Çalhan, A.: Energy efficiency solutions for IEEE 802.15.6 based wireless body sensor networks. Wirel. Pers. Commun. 119, 1499–1513 (2021)

    Article  Google Scholar 

  47. Cicioğlu, M.; Çalhan, A.: Energy-efficient and SDN-enabled routing algorithm for wireless body area networks. Comput. Commun. 160, 228–239 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pham Huy Thong or Le Hoang Son.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, Y.H., Lawrence, T.S., Julie, E.G. et al. Enhanced Border and Hole Detection for Energy Utilization in Wireless Sensor Networks. Arab J Sci Eng 47, 9601–9613 (2022). https://doi.org/10.1007/s13369-021-06330-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06330-y

Keywords

Navigation