Skip to main content
Log in

An Interval Discretization Method for Workspace Determination of Parallel Mechanisms

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

An interval discretization method (IDM) is proposed for the workspace determination of parallel mechanisms to address the fundamental problems of unreliable prediction and missing-points existing in the traditional point discretization method (PDM). The IDM involves two parts: the workspace prediction using interval analytical forward kinematics (AFK) and the workspace correction using interval analytical inverse kinematics (AIK). Three typical parallel mechanisms are adopted as illustrative examples, i.e., the planar four-bar mechanism, the spatial 9–3 and 12–6 parallel mechanisms. Firstly, the AFK and AIK of the mechanisms are derived and extended into interval-valued form. Then, the position and orientation workspaces are predicted and corrected in sequence. Finally, numerical behaviors of the proposed and traditional methods are compared. The numerical simulations in Matlab show that: (i) IDM is about 5.34 times faster than PDM; (ii) IDM is about 45.50 times more accurate than PDM; (iii) IDM is about 1.01 times more stable than PDM; and (iv) IDM can realize the prediction of position and orientation workspaces and has no missing-points, thereby demonstrating the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of Data and Material

We will provide all data and materials if necessary.

References

  1. Stewart, D.: A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 180(15), 371–386 (1965). https://doi.org/10.1243/PIME_PROC_1965_180_029_02

    Article  Google Scholar 

  2. You, J.J.; Xi, F.F.; Shen, H.P.; Wang, J.Y.; Yang, X.L.: A novel Stewart-type parallel mechanism with topological reconfiguration: design, kinematics and stiffness evaluation. Mech. Mach. Theory 162, 104329 (2021). https://doi.org/10.1016/j.mechmachtheory.2021.104329

    Article  Google Scholar 

  3. Luces, M.; Mills, J.K.; Benhabib, B.: A review of redundant parallel kinematic mechanisms. J. Intell. Rob. Syst. 86, 175–198 (2017). https://doi.org/10.1007/s10846-016-0430-4

    Article  Google Scholar 

  4. Nabavi, S.N.; Akbarzadeh, A.; Enferadi, J.: A study on kinematics and workspace determination of a general 6-PUS robot. J. Intell. Rob. Syst. 91, 351–362 (2018). https://doi.org/10.1007/s10846-017-0704-5

    Article  Google Scholar 

  5. Xie, F.G.; Liu, X.J.; Wang, J.S.; Wabner, M.: Kinematic optimization of a five degree-of-freedom spatial parallel mechanism with large orientational workspace. ASME J. Mech. Robot. 9(5), 051005 (2017). https://doi.org/10.1115/1.4037254

    Article  Google Scholar 

  6. Ye, P.D.; You, J.J.; Qiu, X.; Wang, L.K.; Li, C.G.; Ru, Y.: Status and development trend of motion performance in parallel robot. J. Nanjing Univ. of Aeron Astron 52(3), 363–377 (2020). https://doi.org/10.16356/j.1005-2615.2020.03.003

    Article  Google Scholar 

  7. Gosselin, C.: Determination of the workspace of 6-DOF parallel manipulators. ASME J. Mech. Des. 112(3), 331–336 (1990). https://doi.org/10.1115/1.2912612

    Article  Google Scholar 

  8. Kuzeci, Z.E.; Omurlu, V.E.; Alp, H.; Ozkol, I.: Workspace analysis of parallel mechanisms through neural networks and genetic algorithms. In: The 12th IEEE International Workshop on Advanced Motion Control, pp. 1–6. IEEE (2012). https://doi.org/10.1109/AMC.2012.6197147

  9. Masory, O.; Wang, J.: Workspace evaluation of Stewart platforms. Adv. Robot. 9(4), 443–461 (1994). https://doi.org/10.1163/156855395X00508

    Article  Google Scholar 

  10. Cao, Y.G.; Zhang, Y.R.; Ma, Y.Z.: Workspace analysis and parameter optimization of 6-RSS parallel mechanism. Chin. J. Mech. Eng. 44(1), 19–24 (2008). https://doi.org/10.3321/j.issn:0577-6686.2008.01.004

    Article  Google Scholar 

  11. Yin, X.Q.; Zhao, G.H.; Ma, L.Z.: Workspace analysis of the end-effectors of Chinese massage robot. Chin. J. Eng. Des. 19(4), 302–306 (2012). https://doi.org/10.3785/j.issn.1006-754X.2012.04.012

    Article  Google Scholar 

  12. Liu, Z.Z.; Liu, H.Y.; Luo, Z.; Zhang, X.H.: Improvement on Monte Carlo method for robot workspace determination. Trans. Chin. Soc. Agric. Mach. 44(1), 230–235 (2013). https://doi.org/10.6041/j.issn.1000-1298.2013.01.043

    Article  Google Scholar 

  13. Merlet, J.P.: An improved design algorithm based on interval analysis for spatial parallel manipulator with specified workspace. In: Proceedings of the 2001 IEEE International Conference on Robotics & Automation, pp. 1289–1294. IEEE (2001). https://doi.org/10.1109/ROBOT.2001.932788

  14. Chablat, D.; Wenger, P.; Majou, F.; Merlet, J.P.: An interval analysis based study for the design and the comparison of three-degrees-of-freedom parallel kinematic machines. Int. J. Robot. Res. 23(6), 615–624 (2004). https://doi.org/10.1177/0278364904044079

    Article  Google Scholar 

  15. Oetomo, D.; Daney, D.; Shirinzadeh, B.; Merlet, J.P.: An interval-based method for workspace analysis of planar flexure-jointed mechanism. ASME J. Mech. Des. 131(1), 011014 (2009). https://doi.org/10.1115/1.3042151

    Article  Google Scholar 

  16. Viegas, C.; Daney, D.; Tavakoli, M.; Almeida, A.T.: Performance analysis and design of parallel kinematic machines using interval analysis. Mech. Mach. Theory 115, 218–236 (2017). https://doi.org/10.1016/j.mechmachtheory.2017.05.003

    Article  Google Scholar 

  17. FarzanehKaloorazi, M.H.; Masouleh, M.T.; Caro, S.: Collision-free workspace of parallel mechanisms based on an interval analysis approach. Robotica 35(8), 1747–1760 (2017). https://doi.org/10.1017/S0263574716000497

    Article  Google Scholar 

  18. Cao, Y.; Lu, K.; Li, X.J.; Zang, Y.: Accurate numerical methods for computing 2D and 3D robot workspace. Int. J. Adv. Rob. Syst. 8(6), 1–13 (2011). https://doi.org/10.5772/45686

    Article  Google Scholar 

  19. Zhao, Z.Y.; Xu, Z.B.; He, J.P.; He, S.; Xu, C.: Configuration optimization of nine degree of freedom super-redundant serial manipulator based on workspace analysis. J. Mech. Eng. 55(21), 51–63 (2019). https://doi.org/10.3901/JME.2019.21.051

    Article  Google Scholar 

  20. Ye, P.D.; You, J.J.; Qiu, X.; Xu, S.; Wang, L.K.; Ru, Y.: Workspace analysis of Stewart derivative parallel robot. Machine Design and Research 36 (4), 47–51+61 (2020). https://doi.org/10.13952/j.cnki.jofmdr.2020.0145. (in Chinese)

  21. Chaudhury, A.N.; Ghosal, A.: Optimum design of multi-degree-of-freedom closed-loop mechanisms and parallel manipulators for a prescribed workspace using Monte Carlo method. Mech. Mach. Theory 118, 115–138 (2017). https://doi.org/10.1016/j.mechmachtheory.2017.07.021

    Article  Google Scholar 

  22. Li, C.G.; Wu, H.T.; You, J.J.: Redundant parallel six-axis accelerometer and measuring method. China. Patent CN101949954A

  23. You, J.J.; Zuo, F.Y.; Yan, F.; Wang, J.; Wang, L.J.; Yan, P.F.: In-parallel platform and solution method of forward kinematics. China. Patent CN106142051A

  24. Shen, H.P.; Li, J.; Wang, Z.; Meng, Q.M.; Dai, L.F.: Topology structure optimization and performance improvement for parallel mechanisms based on structure coupling-reducing and motion decoupling. J. Mech. Eng. 53(19), 176–186 (2017). https://doi.org/10.3901/JME.2017.19.176

    Article  Google Scholar 

  25. Merlet, J.P.: Interval analysis and robotics. Robot. Res. 66, 147–156 (2010). https://doi.org/10.1007/978-3-642-14743-2_13

    Article  Google Scholar 

  26. Moore, R.E.: Interval analysis. Prentice-Hall, Englewood Cliffs, N. J., USA. (1966). http://www.researchgate.net/publication/273129945_Interval_Analysis

  27. Tannous, M.; Caro, S.; Goldsztejn, A.: Sensitivity analysis of parallel manipulators using an interval linearization method. Mech. Mach. Theory 71, 93–114 (2014). https://doi.org/10.1016/j.mechmachtheory.2013.09.004

    Article  Google Scholar 

  28. You, J.J.; Wang, L.K.; Xi, F.F.; Shen, J.J.: Decoupling algorithm and maximum operation frequency of a novel parallel type six-axis accelerometer. IEEE Sens. J. 20(21), 12637–12651 (2020). https://doi.org/10.1109/JSEN.2020.3001250

    Article  Google Scholar 

  29. Huang, L.; Li, Z.C.; Xie, F.; Feng, K.: Strapdown sculling velocity algorithms using novel input combinations. Math. Probl. Eng. 2018, 1–9 (2018). https://doi.org/10.1155/2018/9823138

    Article  Google Scholar 

  30. Merlet, J.P.: Parallel robots. Springer Netherlands, Berlin, Germany. (2006). http://link.springer.com/book/10.1007%2F978-94-010-9587-7

Download references

Funding

This work was supported by an Oversea Study Fellowship from the China Scholarship Council (Grant No. 201908320035) and the National Natural Science Foundation of China (NSFC) (Grant No. 51405237).

Author information

Authors and Affiliations

Authors

Contributions

Jingjing You and Fengfeng Xi offered suggestions and reviewed the manuscript; Pengda Ye performed the simulation and wrote the manuscript; Jieyu Wang reviewed the manuscript; Yu Ru supervised all works.

Corresponding author

Correspondence to Jingjing You.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical Approval

There is no ethical issues in the research content.

Consent to Participate

All authors agreed to participate this research work.

Consent for Publication

All authors agreed to publish this research work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, P., You, J., Xi, F. et al. An Interval Discretization Method for Workspace Determination of Parallel Mechanisms. Arab J Sci Eng 47, 8805–8827 (2022). https://doi.org/10.1007/s13369-021-06310-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06310-2

Keywords

Navigation