Skip to main content

Advertisement

Log in

Effectiveness of Ru/Mg/Ce Supported on Alumina Catalyst for Direct Conversion of Syngas to Methane: Tailoring Activity and Physicochemical Studies

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The century of urbanisation and industrialisation had a great impact on the environment due to the rapid growth of the flue gas sectors. Thus, green technology is enforced to convert carbon dioxide (CO2) gas into methane (CH4) gas as an alternative fuel in electricity generation, particularly coal and natural gas sources. Cerium (Ce) was recognised as one of the most basic and unique redox characteristics utilised in the promising methanation reaction among catalysts used. The trimetallic catalyst used in this work was prepared with Ce as the based catalyst and ruthenium/magnesium (Ru/Mg) as the impregnated metal. Response surface methodology projected the CO2 conversion to be less than 0.3% of the experimental value of 78.82% using the indicated parameters of 593 °C calcination temperature and 61 wt.% ratios. Ru/Mg/Ce/Al2O3 catalyst with 60 wt.% of Ce loading calcined at 600 °C produced 58.08% of CH4. The characterisation results revealed that CeO2, Mg(Al2O4), and RuO2 species were the active species for CO2 methanation selectivity, as observed in XRD and XPS analyses. The mesoporous structure and particle agglomeration resulted in a surface area of 147 m2/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cao, X.: Climate change and energy development: implications for developing countries. Resour. Policy 29(1), 61–67 (2003). https://doi.org/10.1016/j.resourpol.2004.05.001

    Article  Google Scholar 

  2. Reddish, A.; Rand, M.: The environmental effects of present energy policies. In: Blunden, J.; Reddish, A. (Eds.) Energy resources and environment, pp. 43–91. Hodder and Stoughton & the Open University, London (1996)

    Google Scholar 

  3. Bahari, N.A.; Isahak, W.N.R.W.; Masdar, M.S.; Yaakob, Z.: Clean hydrogen generation and storage strategies via CO2 utilization into chemicals and fuels: a review. Int. J. Energy Res. 43(10), 5128–5150 (2019). https://doi.org/10.1002/er.4498

    Article  Google Scholar 

  4. Ahmad, N.N.R.; Leo, C.P.; Mohammad, A.W.; Shaari, N.; Ang, W.L.: Recent progress in the development of ionic liquid-based mixed matrix membrane for CO2 separation: a review. Int. J. Energy Res. 45(7), 9800–9830 (2021). https://doi.org/10.1002/er.6518

    Article  Google Scholar 

  5. Bukhari, S.N.; Chong, C.C.; Setiabudi, H.D.; Ainirazali, N.; Aziz, M.A.A.; Teh, L.P.; Annuar, N.H.R.: Comparative study of Ni loading methods towards superior CO2 conversion over Ni/SBA-15. Int. J. Eng. Technol. 7, 1663–1665 (2018). https://doi.org/10.14419/ijet.v7i4.38.29228

    Article  Google Scholar 

  6. Rosid, S.J.M.; Toemen, S.; Abu Bakar, W.A.W.; Zamani, A.H.; Mokhtar, W.N.A.W.: Physicochemical characteristic of neodymium oxide-based catalyst for in-situ CO2/H2 methanation reaction. J. Saudi Chem. Soc. 23(3), 284–293 (2019). https://doi.org/10.1016/j.jscs.2018.08.002

    Article  Google Scholar 

  7. Muroyama, H.; Tsuda, Y.; Asakoshi, T.; Masitah, H.; Okanishi, T.; Matsui, T.; Eguchi, K.: Carbon dioxide methanation over Ni catalysts supported on various metal oxides. J. Catal. 343, 178–184 (2016). https://doi.org/10.1016/j.jcat.2016.07.018

    Article  Google Scholar 

  8. Zhou, G.; Liu, H.; Cui, K.; Jia, A.; Hu, G.; Jiao, Z.; Liu, Y.; Zhang, X.: Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation. Appl. Surf. Sci. 383, 248–252 (2016). https://doi.org/10.1016/j.apsusc.2016.04.180

    Article  Google Scholar 

  9. Konishcheva, M.V.; Potemkin, D.I.; Badmaev, S.D.; Snytnikov, P.V.; Paukshtis, E.A.; Sobyanin, V.A.; Parmon, V.N.: On the mechanism of CO and CO2 methanation over Ni/CeO2 catalysts. Top. Catal. 59, 1424–1430 (2016). https://doi.org/10.1007/s11244-016-0650-7

    Article  Google Scholar 

  10. Wu, J.C.S.; Chou, H.C.: Bimetallic Rh-Ni/BN catalyst for methane reforming with CO2. Chem. Eng. J. 148(2), 539–545 (2009). https://doi.org/10.1016/j.cej.2009.01.011

    Article  Google Scholar 

  11. Toemen, S.; Bakar, W.A.W.A.; Ali, R.: Investigation of Ru/Mn/Ce/Al2O3 catalyst for carbon dioxide methanation: catalytic optimization, physicochemical studies and RSM. J. Taiwan Inst. Chem. Eng. 45(5), 2370–2378 (2014). https://doi.org/10.1016/j.jtice.2014.07.009

    Article  Google Scholar 

  12. Rao, G.R.; Mishra, B.G.: Structural redox and catalytic chemistry of ceria based materials. Bull. Catal. Soc. India 2, 122–134 (2003)

    Google Scholar 

  13. Buang, N.A.; Abu Bakar, W.A.W.; Marsin, F.M.; Razali, M.H.: CO2/H2 methanation on nickel oxide based catalyst doped with various elements for the purification. Malays. J. Anal. Sci. 12(1), 217–223 (2008)

    Google Scholar 

  14. Ocampo, F.; Louis, B.; Kiwi-Minsker, L.; Roger, A.-C.: Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1−xO2 catalysts for carbon dioxide methanation. Appl. Catal. A Gen. 392(1–2), 36–44 (2011). https://doi.org/10.1016/j.apcata.2010.10.025

    Article  Google Scholar 

  15. Rosid, S.J.M.; Bakar, W.A.W.A.; Ali, R.: Characterization and modelling optimization on methanation activity using Box-Behnken design through cerium doped catalysts. J. Clean. Prod. 170, 278–287 (2018). https://doi.org/10.1016/j.jclepro.2017.09.073

    Article  Google Scholar 

  16. Zamani, A.H.; Shohaimi, N.A.M.; Rosid, S.J.M.; Abdullah, N.H.; Shukri, N.M.: Enhanced low temperature reaction for the CO2 methanation over Ru promoted Cu/Mn on alumina support catalyst using double reactor system. J. Taiwan Inst. Chem. Eng. 96, 400–408 (2019)

    Article  Google Scholar 

  17. Myers, R.H.; Khuri, A.I.; Vining, G.: Response surface alternative to the Taguchi robust parameter design approach. Am. Stat. 46(2), 131–139 (1992). https://doi.org/10.2307/2684183

    Article  Google Scholar 

  18. Perego, C.; Villa, P.: Catalyst preparation methods. Catal. Today 34(3–4), 281–305 (1997)

    Article  Google Scholar 

  19. Yaccato, K.; Carhart, R.; Hagemeyer, A.; Lesik, A.; Strasser, P.; Volpe, A.F.; Turner, H.; Weinberg, H.; Grasselli, R.K.; Brooks, C.: Competitive CO and CO2 methanation over supported noble metal catalysts in high throughout scanning mass spectrometer. Appl. Catal. A Gen. 296, 30–48 (2005). https://doi.org/10.1016/j.apcata.2005.07.052

    Article  Google Scholar 

  20. Kousha, M.; Tavakoli, S.; Danesha, E.: Central composite design optimization of acid blue 25 dye biosorption using shrimp shell biomass. J. Mol. Liq. 207, 266–273 (2015). https://doi.org/10.1016/j.molliq.2015.03.046

    Article  Google Scholar 

  21. Azhari, A.W.; Sopian, K.; Che Halin, D.S.; Ibrahim, A.H.; Zaidi, S.H.: Response surface methodology (RSM) in fabrication of nanostructured silicon. Mater. Sci. Forum. 857, 151–155 (2016)

    Article  Google Scholar 

  22. Yue, S.; Qiyan, F.; Xiangdong, L.: Application of response surface methodology to optimize degradation of polyacrylamide in aqueous solution using heterogeneous fenton process. Desalin. Water Treat. 53(7), 1–10 (2013). https://doi.org/10.1080/19443994.2013.856351

    Article  Google Scholar 

  23. Rosid, S.J.M.; Bakar, W.A.W.A.; Ali, R.: Methanation reaction over samarium oxide based catalysts. Mal. J. Fund. Appl. Sci. 9(1), 28–34 (2013). https://doi.org/10.11113/mjfas.v9n1.78

    Article  Google Scholar 

  24. Bakar, W.A.W.A.; Ali, R.; Toemen, S.: investigation of carbon dioxide methanation over ceria based catalysts. J. Teknol. 70(1), 75–80 (2014). https://doi.org/10.11113/jt.v70.3418

    Article  Google Scholar 

  25. Yang, S.; Wu, Y.M.: One step synthesis of methyl isobutyl ketone over palladium supported on AlPO4-11 and SAPO-11. Appl. Catal. A Gen. 192, 211–220 (2000). https://doi.org/10.1016/S0926-860X(99)00408-1

    Article  Google Scholar 

  26. Oh, S.W.; Bang, H.Y.; Bae, Y.C.; Sun, Y.K.: Effect of calcinations temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO and NiO) prepared via ultrasonic spray pyrolysis. J. Power Sources 173, 502–509 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.087

    Article  Google Scholar 

  27. Zheng, H.Y.; An, M.Z.; Lu, J.F.: Surface characterization of the Zn-Al-Al2O3 nanocomposite coating fabricated under ultrasound condition. Appl. Surf. Sci. 254, 1644–1650 (2008). https://doi.org/10.1016/j.apsusc.2007.07.110

    Article  Google Scholar 

  28. Miyakoshi, A.; Ueno, A.; Ichikawa, M.: XPS and TPD characterization of manganese-substituted iron-potassium oxide catalysts which are selective for dehydrogenation of ethylbenzene into styrene. Appl. Catal. A Gen. 219, 249–258 (2001). https://doi.org/10.1016/S0926-860X(01)00697-4

    Article  Google Scholar 

  29. Toemen, S.; Bakar, W.A.W.A.; Ali, R.: Effect of ceria and strontia over Ru/Mn/Al2O3 catalyst: catalytic methanation, physicochemical and mechanistic studies. J. CO2 Util. 13, 38–49 (2016)

    Article  Google Scholar 

  30. Chang, F.-M.; Brahma, S.; Huang, J.-H.; Wu, Z.-Z.; Lo, K.-Y.: Strong correlation between optical properties and mechanism in deficiency of normalized self-assembly ZnO nanorods. Nature 9, 905 (2019). https://doi.org/10.1038/s41598-018-37601-8

    Article  Google Scholar 

  31. Kloprogge, J.T.; Wood, B.J.: X-ray photoelectron spectroscopic and Raman microscopic investigation of the variscite group minerals: variscite, strengite, scorodite and mansfieldite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 185, 163–172 (2017)

    Article  Google Scholar 

  32. Wasalathanthri, N.D.; Poyraz, A.S.; Biswas, S.; Meng, Y.; Kuo, C.; Kriz, D.A.; Suib, S.L.: High-performance catalytic CH4 oxidation at low temperatures : Inverse micelle synthesis of amorphous mesoporous manganese oxides and mild transformation to K2-xMn8O16 and ϵ-MnO2. J. Phys. Chem. C 119, 1473–1482 (2015)

    Article  Google Scholar 

  33. Truffault, L.; Ta, M.T.; Devers, T.; Konstantinor, K.; Harel, V.; Simmonard, C.; Andreazza, C.; Neurkoveti, L.P.; Pinear, A.; Verun, D.: Application of nanostructured Ca doped CeO2 for ultraviolet filtration. Mater. Res. Bull. 45, 527–535 (2010). https://doi.org/10.1016/j.materresbull.2010.02.008

    Article  Google Scholar 

  34. Shahed, S.M.F.; Hasegawa, T.; Sainoo, Y.: STM and XPS study of CeO2(111) reduction by atomic hydrogen. Surf. Sci. 628, 30–35 (2014). https://doi.org/10.1016/j.susc.2014.05.008

    Article  Google Scholar 

  35. Kasten, L.S.; Grant, J.T.; Grebasch, N.; Voevodin, N.; Arnold, F.E.; Donley, M.S.: An XPS study of cerium dopants in sol-gel coatings for aluminium 2024–T3. Surf. Coat. Technol. 140, 11–15 (2001). https://doi.org/10.1016/S0257-8972(01)01004-0

    Article  Google Scholar 

  36. Ardizzone, S.; Bianchi, C.L.; Fadoni, M.; Vercelli, B.: Magnesium salts and oxide: an XPS overview. Appl. Surf. Sci. 119, 253–259 (1997). https://doi.org/10.1016/S0169-4332(97)00180-3

    Article  Google Scholar 

  37. Wan Abu Bakar, W.A.; Ali, R.; Toemen, S.: Catalytic methanation reaction over supported nickel-ruthenium oxide base for purification of simulated natural Gas. Sci. Iran 19(3), 525–534 (2012). https://doi.org/10.1016/j.scient.2012.02.004

    Article  Google Scholar 

  38. Wan Abu Bakar, W.A.; Ali, R.; Toemen, S.: Effect of Strontium on the Catalytic Activity and Physicochemical Properties of Ru/Mn Catalysts for CO2 Methanation Reaction. Adv. Mater. Res. 1107, 371–376 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are gratefully acknowledged the Ministry of Higher Education for FRGS Vote 5F076 and Universiti Teknologi Malaysia for financial support under UTM-FR vote 21H03.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Siti Fadziana Sulaiman performed material preparation, data collection, and analysis. Wan Azelee Wan Abu Bakar supervised the research and checked the scientific contents of the manuscript. Wan Nur Aini Wan Mokhtar, Renugambaal Nadarajan, Khalida Muda, and Sarina Mat Rosid assisted in the characterisation of the catalysts and interpreted the data in RSM. Susilawati Toemen and Salmiah Jamal Mat Rosid wrote the first draft of the manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Susilawati Toemen or Salmiah Jamal Mat Rosid.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toemen, S., Sulaiman, S.F., Rosid, S.J.M. et al. Effectiveness of Ru/Mg/Ce Supported on Alumina Catalyst for Direct Conversion of Syngas to Methane: Tailoring Activity and Physicochemical Studies. Arab J Sci Eng 47, 7023–7033 (2022). https://doi.org/10.1007/s13369-021-06300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06300-4

Keywords

Navigation