Skip to main content

Advertisement

Log in

Structural, Optical, Dielectric and Magnetic Properties of Double Perovskite Oxides A2FeTiO6 (A = Zn, Mg, Cu) Nanopowders

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The investigation of structural, microstructural, optical, dielectric, and magnetic properties of double perovskite materials Zn2FeTiO6 (M1), Mg2FeTiO6 (M2), and Cu2FeTiO6 (M3) synthesized by solid-state reaction was reported in this work. The three compounds crystalized in a monoclinic structure with the space group of P121/c. The microstructure of M1, M2, M3 samples was scanned by SEM to show the crystallinity in shape, and elemental mappings from EDX confirmed the consistency with sample concentrations. Similar spectra were observed from the FTIR technique. The diffused reflectance in the 200–800 nm wavelength range and photoluminescence for the samples were measured to investigate the optical properties. Dielectric constants, conductivity, frequency dependence of the tangent loss (tan δ), AC conductivity at different dc bias voltages, and the electric modulus M(ω) were examined to ensure the potential of the examined materials for microelectronic applications in circuit devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wels, A.F.: Structural Inorganic Chemistry. Clarendon Press, Oxford (1962)

    Google Scholar 

  2. Ward, R.: Mixed Metal Oxides. Clarendon Press, Oxford (1966)

    Google Scholar 

  3. Kobayashi, K.I.; Kimura, T.; Sawada, H.; Terakura, K.; Tokura, I.: Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395, 677 (1998)

    Article  Google Scholar 

  4. Patterson, F.K.; Moeler, C.W.; Ward, R.: Magnetic oxides of molybdenum(V) and tungsten(V) with the ordered perovskite structure. Inorg. Chem. 2, 196 (1963)

    Article  Google Scholar 

  5. Retuerto, M.; Martínez-Lope, M.J.; García-Hernández, M.; Alonso, J.A.: HighPressure synthesis of the double perovskite sr2femoo6: ıncrement of the cationic ordering and enhanced magnetic properties. J. Phys. Condens. Matter 21, 186003 (2009)

    Article  Google Scholar 

  6. Maignan, A.; Raveau, B.; Martin, C.; Hervieu, M.: Large intragrain magnetoresistance above room temperature in the double perovskite Ba2FeMoO6. J. Solid State Chem. 144, 224–227 (1999)

    Article  Google Scholar 

  7. Moreno, N.; Barbosa, L.; Ardila, D.R.; Andreeta, J.P.: Magnetic measurements on single crystal of double perovskite Ca2FeMoO6. J. Supercond. Nov. Magn. 26, 2501–2503 (2013)

    Article  Google Scholar 

  8. Borges, R.; Thomas, R.; Cullinan, C.; Coey, J.; Suryanarayanan, R.; Ben-Dor, L.; Pinsard-Gaudart, L.; Revcolevschi, A.: Magnetic properties of the double perovskites A2FeMoO6; A = Ca, Sr, Ba. J. Phys. Condens. Matter 11, 445 (1999)

    Article  Google Scholar 

  9. Lopez, C.A.; Viola, M.C.; Pedregosa, J.C.; Carbonio, R.E.; Sanchez, R.D.; Fernandez-Dız, M.T.: La3+ doping of the Sr2CoWO6 double perovskite: a structural and magnetic study. J. Solid State Chem. 181, 3095–3102 (2008)

    Article  Google Scholar 

  10. Zhang, G.; Li, G.; Liao, F.; Fu, Y.; Xiong, M.; Lin, J.: Crystal growth and magnetic properties of the double perovskites R2MnNiO6 (R = Pr, Sm and Ho) by a hydrothermal route. J. Cryst. Growth 327, 262–266 (2011)

    Article  Google Scholar 

  11. Xu, L.; Qin, C.; Wan, Y.; Xie, H.; Huang, Y.; Qin, L.; Seo, H.J.: Sol–gel preparation, band structure, and photochemical activities of double perovskite A2NiWO6 (A = Ca, Sr) nanorods. J. Taiwan Inst. Chem. Eng. 71, 433–440 (2017)

    Article  Google Scholar 

  12. Bhatti, I.N.; Bhatti, I.N.; Mahato, R.N.; Ahsan, M.A.H.: Magnetic behavior, Griffiths phase and magneto-transport study in 3d based nano-crystalline double perovskite Pr2CoMnO6. Phys. Lett. A 383, 2326–2332 (2019)

    Article  Google Scholar 

  13. Ravi, S.: Spin transport through silicon using a double perovskite-based magnetic tunnel junction. Superlattices Microstruct. 147, 106688 (2020)

    Article  Google Scholar 

  14. Li, H.; Li, F.; Shen, Z.; Han, S.T.; Chen, J.; Dong, C.; Chen, C.; Zhou, Y.; Wang, M.: Photoferroelectric perovskite solar cells: principles, advances and insights. Nano Today 37, 101062 (2021)

    Article  Google Scholar 

  15. Kumar, P.; Presto, S.; Sinha, A.S.K.; Varma, S.; Viviani, M.; Sin, P.: Effect of samarium (Sm3+) doping on structure and electrical conductivity of double perovskite Sr2NiMoO6 as anode compound for SOFC. J. Alloys Compd. 725, 1123–1129 (2017)

    Article  Google Scholar 

  16. Zhanga, J.; Zhang, Z.; Chen, Y.; Xu, X.; Zhou, C.; Yang, G.; Zhou, W.; Shao, Z.: Compounds design for ceramic oxygen permeation membranes: single perovskite vs. single/double perovskite composite, a case study of tungstendoped barium strontium cobalt ferrite. J. Membr. Sci. 566, 278–287 (2018)

    Article  Google Scholar 

  17. The Hung, N.; Bac, L.H.; Trung, N.N.; The Hoang, N.; Vinh, P.V.; Dung, D.D.: Room-temperature ferromagnetism in Fe-based perovskite solid solution in lead-free ferroelectric Bi0.5Na0.5TiO3 compounds. J. Magn. Magn. 451, 183–186 (2018)

    Article  Google Scholar 

  18. Lekshmi, P.N.; Pillai, S.S.; Suresh, K.G.; Santhosh, P.N.; Varm, M.R.: Room temperature relaxor ferroelectricity and spin glass behavior in Sr2FeTiO6 double perovskite. J. Alloys Compd. 522, 90–95 (2012)

    Article  Google Scholar 

  19. Zheng, K.: Ti-doped Sr2Fe1.4-xTixMo0.6O6-δ double perovskites with improved stability as anode materials for Solid Oxide Fuel Cells. Mater. Res. Bull. 128, 110877 (2020)

    Article  Google Scholar 

  20. Elbadawi, A.A.; Yassin, O.A.; Gismelseed, A.A.: Effect of the internal pressure and the anti-site disorder on the structure and magnetic properties of ALaFeTiO6 (A=Ca, Sr, Ba) double perovskite oxides. J. Magn. Magn. Mater. 326, 1–6 (2013)

    Article  Google Scholar 

  21. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976)

    Article  Google Scholar 

  22. Hall, W.H.: X-Ray Line Broadening in Metals. Proc. Phys. Soc. A 62, 741–743 (1949)

    Article  Google Scholar 

  23. Halder, N.C.; Wagner, C.N.S.: Separation of particle size and lattice strain in integral breadth measurements. Acta Cryst. 20, 312–313 (1966)

    Article  Google Scholar 

  24. Reyes, B.A.; Soto, T.E.; de la Torre Medina, J.; Navarro, O.: Curie temperature enhancement in the double perovskite Sr2−xLaxFeMoO6 system: an experimental study. Phys. B Condens. Matter 556, 108–113 (2019)

    Article  Google Scholar 

  25. Ishaq, B.; Murtaza, G.; Sharif, S.; Khan, M.A.; Akhtar, N.; Will, I.G.; Saleem, M.; Ramay, S.M.: Investigating the effect of Cd-Mn co-doped nano-sized BiFeO3 on its physical properties. Results Phys. 6, 675–682 (2016)

    Article  Google Scholar 

  26. Slater, J.C.: The Lorentz correction in barium titanate. Phys. Rev. 78, 748 (1950)

    Article  MATH  Google Scholar 

  27. Spitzer, W.G.; Miller, R.C.; Kleinman, D.A.; Howarth, L.E.: Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2. Phys. Rev. 126, 1710 (1962)

    Article  Google Scholar 

  28. Kumar, S.; Kaur, H.; Kaur, H.; Kaur, I.; Dharamvir, K.; Bharadwaj, L.M.: Magnetic field-guided orientation of carbon nanotubes through their conjugation with magnetic nanoparticles. J. Mater. Sci. 47, 1489–1496 (2012)

    Article  Google Scholar 

  29. Alsabah, Y.A.; Elden, A.T.; AlSalhi, M.S.; Elbadawi, A.A.; Siddig, M.A.: Structural and optical properties of A2YVO6 (A = Mg, Sr) double perovskite oxides. Results Phys. 15, 102589 (2019)

    Article  Google Scholar 

  30. Xiao, N.; Shen, J.; Xiao, T.; Wu, B.; Luo, X.; Li, L.; Wang, Z.; Zhou, X.: Sr2CaWxMo1−xO6: Eu3+, Li+: an emission tunable phosphor through site symmetry and excitation wavelength. Mater Res. Bull. 70, 684–690 (2015)

    Article  Google Scholar 

  31. Mhareb, M.H.A.; Alajerami, Y.S.M.; Sayyed, M.I.; Dwaikat, N.; Alqahtani, M.; Alshahri, F.; Saleh, N.; Alonizan, N.; Ghrib, T.; Al-Dhafar, S.I.: Radiation shielding, structural, physical, and optical properties for a series of borosilicate glass. J. Non-Cryst. Solids 550, 120360 (2020)

    Article  Google Scholar 

  32. Praveena, U.; Kumar, V.J.B.V.; Prasad, N.V.; Prasad, G.; Kumar, G.S.: Effect of synthesis on properties of Gd doped LaBi5Fe2Ti3O18, mater. Today 11, 1041–1048 (2019)

    Google Scholar 

  33. Devaraja, P.B.; Avadhani, D.N.; Nagabhushana, H.; Prashantha, S.C.; Sharma, S.C.; Nagabhushana, B.M.; Nagaswarupa, H.P.; Prasad, B.D.: Luminescence properties of MgO: Fe3+ nanopowders for WLEDs under NUV excitation prepared via propellant combustion route. J. Radiat. Res. Appl. 8, 362–373 (2015)

    Google Scholar 

  34. Zhang, S.B.; Wei, S.H.; Zunger, A.: Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B 63, 075205 (2001)

    Article  Google Scholar 

  35. Kumar, N.; Parui, S.S.; Limbu, S.; Mahato, D.K.; Tiwari, N.; Chauhan, R.N.: Structural and optical properties of sol–gel derived CuO and Cu2O nanoparticles. Mater. Today Proc. (2021)

  36. Reddy, A.V.; Ranga, G.; Mohan, D.; Ravinder, D.; Boyanov, B.S.: High-frequency dielectric behaviour of polycrystalline zinc substituted cobalt ferrites. J. Mater. Sci. 34, 3169 (1999)

    Article  Google Scholar 

  37. Reddy, M.B.; Reddy, P.V.: Low-frequency dielectric behaviour of I mixed Li-Ti ferrites. J. Appl. Phys. 24, 975 (1991)

    Google Scholar 

  38. Raman, R.; Murthy, V.R.K.; Vishvanathan, B.: Microwave dielectric loss studies on lithium-zinc ferrites. J. Appl. Phys. 69, 4053 (1991)

    Article  Google Scholar 

  39. Radha, K.; Ravinder, D.: Frequency and composition dependence of dielectric behaviour of mixed Li-Cd ferrites. Ind. J. Pure Appl. Phys. 33, 74 (1995)

    Google Scholar 

  40. Shaikh, A.M.; Bellad, S.S.; Chougule, B.K.: Temperature and frequency-dependent dielectric properties of Zn substituted Li–Mg ferrites. J. Magn. Magn. Mater. 195, 384–390 (1999)

    Article  Google Scholar 

  41. Sivakumar, N.; Narayanasamy, A.; Jeyadevan, B.; Joseyphus, R.J.; Venkateswaran, C.: Dielectric relaxation behaviour of nanostructured Mn–Zn ferrite. J. Phys. D Appl. Phys. 41, 245001 (2008)

    Article  Google Scholar 

  42. Kumari, K.; Prasad, A.; Prasad, K.: Dielectric, Impedance/modulus and conductivity studies on [Bi0.5(Na1-xKx)0.5]0.94Ba0.06TiO.3,[0.16 ≤ x ≤ 0.20] lead free ceramics. Am. J. Mater. Sci. 6, 1–8 (2016)

    Google Scholar 

  43. Jonscher, A.K.: The universal’dielectric response. Nature 267, 673 (1977)

    Article  Google Scholar 

  44. Singh, L.; Rai, U.S.; Mandal, K.; Sin, B.C.; Lee, S.I.; Lee, Y.: Dielectric, AC-impedance, modulus studies on 0.5BaTiO3· 0.5CaCu3Ti4O12 nano-composite ceramic synthesized by one-pot, glycineassisted nitrate-gel route. Ceram. Int. 40, 10073–10083 (2014)

    Article  Google Scholar 

  45. Rouahi, A.; Kahouli, A.; Challali, F.; Besland, M.P.; Vallée, C.; Yangui, B.; Salimy, S.; Goullet, A.; Sylvestre, A.: Impedance andelectric modulus study of amorphous TiTaO thin films: highlight of the interphase effect. J. Phys. D 46, 065308 (2013)

    Article  Google Scholar 

  46. Selmi, A.; Khaldi, O.; Mascot, M.; Jomni, F.; Carru, J.: Dielectric relaxations in Ba0.85Sr0.15TiO3 thin films deposited on Pt/Ti/SiO2/Si substrates by sol–gel method. J. Mater. Sci. 27, 11299–11307 (2016)

    Google Scholar 

  47. Sahu, M.; Pradhan, S.K.; Hajra, S.; Panigrahi, B.K.; Choudhary, R.: Studies of structural, electrical, and excitation performance of electronic material: europium substituted 0.9(Bi0.5Na0.5TiO3)–0.1(PbZr0.48Ti0.52O3). Appl. Phys. A 125, 183 (2019)

    Article  Google Scholar 

  48. Rayssi, C.; Kossi, S.E.; Dhahri, J.; Khirouni, K.: Frequency and temperature dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3(0 ≤ x ≤ 0.1). RSC Adv. 8, 17139–17150 (2018)

    Article  Google Scholar 

  49. Schmidt, R.; Pandey, S.; Fiorenza, P.; Sinclair, D.C.: Non-stoichiometry in “CaCu3Ti4O12” (CCTO) ceramics. RSC Adv. 3, 14580–14589 (2013)

    Article  Google Scholar 

  50. Cullity, B.D.: “Introduction to Magnetic Materials. Wiley, Hoboken (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taher Ghrib.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghrib, T., Ercan, F., Kayed, T.S. et al. Structural, Optical, Dielectric and Magnetic Properties of Double Perovskite Oxides A2FeTiO6 (A = Zn, Mg, Cu) Nanopowders. Arab J Sci Eng 47, 7609–7620 (2022). https://doi.org/10.1007/s13369-021-06290-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06290-3

Keywords

Navigation