Skip to main content
Log in

Study and Optimization of the Synthesis of Apatitic Nanoparticles by the Dissolution/Precipitation Method

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, we have studied and optimized the technique of the synthesis of hydroxyapatite by a new method called "dissolution/reprecipitation", with the aim of finding the appropriate operating conditions for the synthesis of apatitic nanoparticles. The optimum value of the size of the apatitic nanoparticles being 65 nm. The theoretical results presented by this experimental design have been verified: the experimental results are similar to the results estimated by this model. Scanning electron microscopy images confirm the morphology of apatitic nanoparticles and verify the validity of our mathematical modeling. Analysis by infrared spectroscopy and X-ray diffraction of the products obtained by the method shows that the final phases are pure and stoichiometric. The method of dissolving-reprecipitating apatitic nanoparticles has several advantages over other methods, such as purity and nanoscale sizes of the final phase. The new dissolution / reprecipitation method is a synthesis technique which makes it possible to prepare very pure hydroxyapatite nanoparticles without the intervention of precursors (salts) which generally generate impurities in the final product. The new method can then be used in the synthesis of apatitic biocomposites using biopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

HAp:

Hydroxyapatite

TCP:

Tricalcium phosphate

DCPD:

Dicalcium Phosphate Dihydrate

RMSE:

Root mean square error

Dp:

Grain size (nm)

M:

Weight

V:

Volume

T:

Temperature

References

  1. Deptirta, A.; Olczak, T.; Lada, W.; Borello, A.; Alvani, C.; Lorenzini, L. et al.: Preparation of calcium phosphate powders by water extraction variant of sol-gel process. Hydroxyapatite Related Mater. 263 (1994)

  2. Deptuła, A.; Łada, W.; Olczak, T.; Borello, A.; Alvani, C.; Di Bartolomeo, A.: Preparation of spherical powders of hydroxyapatite by sol–gel process. J. Non-Cryst. Solids 147, 537–541 (1992)

    Article  Google Scholar 

  3. Jillavenkatesa, A.; Condrate, R., Sr.: Sol–gel processing of hydroxyapatite. J. Mater. Sci. 33(16), 4111–4119 (1998)

    Article  Google Scholar 

  4. Yousefi, K.; Khalife, A.: Influence of phosphor precursors on the morphology and purity of sol–gel-derived hydroxyapatite nanoparticles. Adv. Appl. NanoBio-Technol. 2(2), 49–52 (2021)

    Google Scholar 

  5. Wallaeys, R.: Contribution à l'étude des apatites phosphocalciques (1952)

  6. Trombe, J.-C.: Contribution à l'étude de la décomposition et de la réactivité de certaines apatites hydroxylées, carbonatées ou fluorées alcalino-terreuses. Masson (1972)

  7. Sato, R.; Arita, T.; Shimada, R.; Nohara, T.; Tabata, K.; Koseki, K., et al.: Biocompatible composite of cellulose nanocrystal and hydroxyapatite with large mechanical strength. Cellulose 28(2), 871–879 (2021)

    Article  Google Scholar 

  8. Sadat-Shojai, M.; Khorasani, M.-T.; Dinpanah-Khoshdargi, E.; Jamshidi, A.: Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 9(8), 7591–7621 (2013)

    Article  Google Scholar 

  9. Kuśnieruk, S.; Wojnarowicz, J.; Chodara, A.; Chudoba, T.; Gierlotka, S.; Lojkowski, W.: Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles. Beilstein J. Nanotechnol. 7(1), 1586–1601 (2016)

    Article  Google Scholar 

  10. Yan, L.; Li, Y.; Deng, Z.-X.; Zhuang, J.; Sun, X.: Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods. Int. J. Inorg. Mater. 3(7), 633–637 (2001)

    Article  Google Scholar 

  11. Zhang, X.; Vecchio, K.S.: Hydrothermal synthesis of hydroxyapatite rods. J. Cryst. Growth 308(1), 133–140 (2007)

    Article  Google Scholar 

  12. Ebrahimi, S.; Stephen Sipaut@ Mohd Nasri, C.; Bin Arshad, S.E.: Hydrothermal synthesis of hydroxyapatite powders using Response Surface Methodology (RSM). PLoS ONE, 16(5), e0251009 (2021)

  13. Arends, J.; Christoffersen, J.; Christoffersen, M.; Eckert, H.; Fowler, B.; Heughebaert, J., et al.: A calcium hydroxyapatite precipitated from an aqueous solution: an international multimethod analysis. J. Cryst. Growth 84(3), 515–532 (1987)

    Article  Google Scholar 

  14. Tsuchida, T.; Kubo, J.; Yoshioka, T.; Sakuma, S.; Takeguchi, T.; Ueda, W.: Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst. J. Catal. 259(2), 183–189 (2008)

    Article  Google Scholar 

  15. Minh, D.P.; Rio, S.; Sharrock, P.; Sebei, H.; Lyczko, N.; Tran, N.D., et al.: Hydroxyapatite starting from calcium carbonate and orthophosphoric acid: synthesis, characterization, and applications. J. Mater. Sci. 49(12), 4261–4269 (2014)

    Article  Google Scholar 

  16. Kehoe, S.; Ardhaoui, M.; Stokes, J.: Design of experiments study of hydroxyapatite synthesis for orthopaedic application using fractional factorial design. J. Mater. Eng. Perform. 20(8), 1423–1437 (2011)

    Article  Google Scholar 

  17. Koutsopoulos, S.: Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J. Biomed. Mater. Res. Official J. Soc. Biomater. Jpn. Soc. Biomater. Austra. Soc. Biomater. Korean Soc. Biomater. 62(4), 600–612 (2002)

    Google Scholar 

  18. Obadia, L.: Synthèse et caractérisation de phosphates de calcium d'intérêt biologique: structure et propriétés de phosphates tricalciques β dopés au sodium: formation d'apatites non stoechiométriques par hydrolyse de phosphate dicalcique dihydraté. Nantes, (2004)

  19. Bouler, J.-M.; LeGeros, R.Z.; Daculsi, G.: Biphasic calcium phosphates: Influence of three synthesis parameters on the HA/β-TCP ratio. J. Biomed. Mater. Res. 51(4), 680–684 (2000). https://doi.org/10.1002/1097-4636(20000915)51:4%3c680::aid-jbm16%3e3.0.co;2-#

    Article  Google Scholar 

  20. Tanahashi, M.; Kamiya, K.; Suzuki, T.; Nasu, H.: Fibrous hydroxyapatite grown in the gel system: effects of pH of the solution on the growth rate and morphology. J. Mater. Sci. - Mater. Med. 3(1), 48–53 (1992)

    Article  Google Scholar 

  21. Huffman, E.O.; Cate, W.E.; Deming, M.E.; Elmore, K.L.: Solubility of phosphates, rates of solution of calcium phosphates in phosphoric acid solutions. J. Agric. Food Chem. 5(4), 266–275 (1957). https://doi.org/10.1021/jf60074a001

    Article  Google Scholar 

  22. Elgadi, M.; Mejdoubi, E.; Elansari, L.; Essaddek, A.; Abouricha, S.; Lamhamdi, A.: Study of the chemical mechanisms of the reaction of neutralization of calcium hydroxide by phosphoric acid. In: Journal de Physique IV (Proceedings), 2005 (Vol. 123, pp. 351–354): EDP sciences

  23. Bohner, M.: Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 31, D37–D47 (2000)

    Article  Google Scholar 

  24. Raynaud, S: Synthèse, frittage et propriétés mécaniques de phosphates de calcium dans le système hydroxyapatite - phosphate tricalcique (1999)

  25. Leamy, P.; Brown, P.W.; TenHuisen, K.; Randall, C.: Fluoride uptake by hydroxyapatite formed by the hydrolysis of α-tricalcium phosphate. J. Biomed. Mater. Res. 42(3), 458–464 (1998). https://doi.org/10.1002/(sici)1097-4636(19981205)42:3%3c458::aid-jbm16%3e3.0.co;2-c

    Article  Google Scholar 

  26. Akao, M.; Aoki, H.; Kato, K.; Sato, A.: Dense polycrystalline β-tricalcium phosphate for prosthetic applications. J. Mater. Sci. 17(2), 343–346 (1982). https://doi.org/10.1007/BF00591468

    Article  Google Scholar 

  27. Elliott, J.C.: Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam (2013)

    Google Scholar 

  28. Nur, A.; Setyawan, H.: An experimental and theoretical investigation of the formation of hydroxyapatite particles prepared by an electrochemical method. J. Chem. Eng. Jpn. 49(2), 144–151 (2018)

    Article  Google Scholar 

  29. Wagner, D.E.; Jones, A.D.; Zhou, H.; Bhaduri, S.B.: Cytocompatibility evaluation of microwave sintered biphasic calcium phosphate scaffolds synthesized using pH control. Mater. Sci. Eng. C 33(3), 1710–1719 (2013)

    Article  Google Scholar 

  30. Destainville, A.: Etude du phosphate tricalcique: application à l'élaboration de biomatériaux céramiques macroporeux en phosphates de calcium. Limoges, (2005)

  31. Azami, M.; Moosavifar, M.J.; Baheiraei, N.; Moztarzadeh, F.; Ai, J.: Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid. J. Biomed. Mater. Res., Part A 100A(5), 1347–1355 (2012). https://doi.org/10.1002/jbm.a.34074

    Article  Google Scholar 

  32. Pinto, O.; Tabaković, A.; Goff, T.; Liu, Y.; Adair, J.: Calcium phosphate and calcium phosphosilicate mediated drug delivery and imaging. In: Intracellular delivery (pp. 713–744): Springer. (2011)

  33. Wang, P.; Li, C.; Gong, H.; Jiang, X.; Wang, H.; Li, K.: Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technol. 203(2), 315–321 (2010). https://doi.org/10.1016/j.powtec.2010.05.023

    Article  Google Scholar 

  34. Azzaoui, K.; Mejdoubi, E.; Lamhamdi, A.; Jodeh, S.; Hamed, O.; Berrabah, M., et al.: Preparation and characterization of biodegradable nanocomposites derived from carboxymethyl cellulose and hydroxyapatite. Carbohyd. Polym. 167, 59–69 (2017)

    Article  Google Scholar 

  35. Goupy, J.: Plans d’expériences: Ed. Techniques Ingénieur. (2006).

  36. Louvet, F.; Delplanque, L.: Les Plans d’Expériences par la méthode Taguchi. Expérimentique. (2005)

  37. Jaafara, A.; Driouichb, A.; Lakbaibib, Z.; El Ayouchiac, H.B.; Azzaouid, K.; Boussaouda, A., et al.: Central composite design for the optimization of Basic Red V degradation in aqueous solution using Fenton reaction. Desalin. Water Treat. 158, 364–371 (2019)

    Article  Google Scholar 

  38. Khuri, A.; Cornell, J.: Response surfaces: designs and analyses. Marce l Dekker. Inc., New York (1996)

    MATH  Google Scholar 

  39. Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M.: Response surface methodology: process and product optimization using designed experiments. Wiley, New York (2016)

    MATH  Google Scholar 

  40. Naanaai, L.; Azzaoui, K.; Lamhamdi, A.; Mejdoubi, E.; Lakrat, M.; Jodeh, S.: Study and optimization of oxygenated apatite obtained by dissolution-reprecipitation of hydroxyapatite in a solution of hydrogen peroxide. Chemistry Africa 3(1), 227–235 (2020)

    Article  Google Scholar 

  41. Goupy, J.; Creighton, L.: Introduction aux plans d’expériences. Paris (France) (2001)

  42. Faucher, J.: Les plans d'expériences pour le réglage de commandes à base de logique floue. (2006)

  43. Rintoul, L.; Wentrup-Byrne, E.; Suzuki, S.; Grøndahl, L.: FT-IR spectroscopy of fluoro-substituted hydroxyapatite: strengths and limitations. J. Mater. Sci. - Mater. Med. 18(9), 1701–1709 (2007)

    Article  Google Scholar 

  44. Sadat-Shojai, M.; Khorasani, M.-T.; Jamshidi, A.: Hydrothermal processing of hydroxyapatite nanoparticles—A Taguchi experimental design approach. J. Cryst. Growth 361, 73–84 (2012)

    Article  Google Scholar 

  45. Fowler, B.: Infrared studies of apatites. I.. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorganic Chem. 13(1), 194–207 (1974)

    Article  Google Scholar 

  46. Fu, L.-H.; Liu, Y.-J.; Ma, M.-G.; Zhang, X.-M.; Xue, Z.-M.; Zhu, J.-F.: Microwave-assisted hydrothermal synthesis of cellulose/hydroxyapatite nanocomposites. Polymers 8(9), 316 (2016)

    Article  Google Scholar 

  47. Alexander, L.E.: X-ray diffraction methods in polymer science (1969)

  48. Xianmiao, C.; Yubao, L.; Yi, Z.; Li, Z.; Jidong, L.; Huanan, W.: Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mater. Sci. Eng., C 29(1), 29–35 (2009)

    Article  Google Scholar 

  49. Bigi, A.; Cojazzi, G.; Panzavolta, S.; Ripamonti, A.; Roveri, N.; Romanello, M., et al.: Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J. Inorg. Biochem. 68(1), 45–51 (1997)

    Article  Google Scholar 

  50. Dabbarh, F.; Lebugle, A.; Taitai, A.; Bennani, M.: Influence du séchage sur la composition de phosphates de calcium carbonatés, analogues osseux. In: Annales de Chimie Science des Matériaux, 2000 (Vol. 25, pp. 339–348, Vol. 5): Elsevier

  51. Kolmas, J.; Piotrowska, U.; Kuras, M.; Kurek, E.: Effect of carbonate substitution on physicochemical and biological properties of silver containing hydroxyapatites. Mater. Sci. Eng., C 74, 124–130 (2017). https://doi.org/10.1016/j.msec.2017.01.003

    Article  Google Scholar 

  52. Prema, D.; Gnanavel, S.; Anuraj, S.; Gopalakrishnan, C.: Synthesis and characterization of different chemical combination of hydroxyapatite for biomedical application. Mater. Today Proc. 5(2, Part 3), 8868–8874 (2018). https://doi.org/10.1016/j.matpr.2017.12.319

    Article  Google Scholar 

  53. Toledano-Osorio, M.; Aguilera, F.S.; Osorio, R.; Muñoz-Soto, E.; Pérez-Álvarez, M.C.; López-López, M.T., et al.: Hydroxyapatite-based cements induce different apatite formation in radicular dentin. Dent. Mater. 36(1), 167–178 (2020)

    Article  Google Scholar 

  54. Lazić, S.; Zec, S.; Miljević, N.; Milonjić, S.: The effect of temperature on the properties of hydroxyapatite precipitated from calcium hydroxide and phosphoric acid. Thermochim. Acta 374(1), 13–22 (2001). https://doi.org/10.1016/S0040-6031(01)00453-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank both Mohammed Premier University and the Department of Chemistry, d'Al-hoceima Abdelmalek Essaadi University, and An-Najah National University for using their chemistry laboratories. The authors reported no funding for this manuscript.

Funding

No funding was received on this work. It is self-sponsored.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding authors

Correspondence to K. Azzaoui or S. Jodeh.

Ethics declarations

Conflict of interest

Authors declare no confict of interest on this work.

Ethical Approval

Authors declare that all third parties’ rights in line with ethical standards are respected.

Informed Consent: This research does not involve human participant nor animal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akartasse, N., Azzaoui, K., Mejdoubi, E. et al. Study and Optimization of the Synthesis of Apatitic Nanoparticles by the Dissolution/Precipitation Method. Arab J Sci Eng 47, 7035–7051 (2022). https://doi.org/10.1007/s13369-021-06283-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06283-2

Keywords

Navigation