Skip to main content

Advertisement

Log in

Thermal Analysis of Shale from a Mexican Deepwater Gas Field

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The increase in global energy demand has stimulated the development of unconventional and deepwater reservoirs such as shale-gas formations, which have become a primary energy source in recent years. Complex technological challenges are involved in the successful exploration and exploitation of shale gas reservoirs. Thermal analysis of shales can provide key knowledge on their mineral composition, reaction mechanisms, kinetic parameters, thermal stability and reactivity, which are very useful to improve the characterization of shale-gas reservoirs. This work presents an investigation about the thermal behavior of a shale sample extracted from a Mexican deepwater gas field. X-ray diffraction (XRD) was used to characterize the shale mineralogy revealing a complex composition of mainly quartz, carbonates, and clays. Non-isothermal pyrolysis tests were performed through simultaneous differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis to characterize the shale thermal-behavior in a temperature range from ambient to 900 °C. Scanning electron microscopy (SEM) was used to characterize the shale morphology before and after pyrolysis. Iso-conversional methods were used to obtain the kinetic parameters, whereas Coats–Redfern (CR) and master-plot methods were used to find the most probable reaction mechanisms involved in the shale pyrolysis. Reactivity of the shale in presence of saline solutions as shale stabilizers was evaluated by using TG-DSC tests. Results showed that shale pyrolysis is carried out in two stages: a clays dehydroxylation following a three-dimensional diffusion mechanism with an average activation energy of 243.58 kJ/mol, and a carbonates decomposition described through a one-dimensional diffusion mechanism with an average activation energy of 220.43 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source: Google Earth)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang, S.; Qin, C.; Feng, Q.; Javadpour, F.; Rui, Z.: A framework for predicting the production performance of unconventional resources using deep learning. Appl. Energy 295, 117016 (2021)

    Article  Google Scholar 

  2. Middleton, R.S.; Gupta, R.; Hyman, J.D.; Viswanathan, H.S.: The shale gas revolution: barriers, sustainability, and emerging opportunities. Appl. Energy 199, 88–95 (2017)

    Article  Google Scholar 

  3. Lal, M.: Shale stability: drilling fluid interaction and shale strength. In: SPE Latin American and Caribbean Petroleum Engineering Conference held in Caracas, Venezuela (1999). https://doi.org/10.2118/54356-MS

  4. Wan, Y.; Chen, Z.; Shen, W.; Kuang, Z.; Liu, X.; Guo, W.; & Hu, Y.: Study of the effects of hydraulic fractures on gas and water flow in shale gas reservoirs. Energy Sources Part A: Recovery Util. Environ. Effects 1–12 (2019)

  5. Striolo, A.; Cole, D.R.: Understanding shale gas: recent progress and remaining challenges. Energy Fuels 31(10), 10300–10310 (2017)

    Article  Google Scholar 

  6. Zou, C.; Zhao, Q.; Dong, D.; Yang, Z.; Qiu, Z.; Liang, F.; Hu, Z.: Geological characteristics, main challenges and future prospect of shale gas. J. Natl. Gas Geosci. 2(5–6), 273–288 (2017)

    Article  Google Scholar 

  7. Lyu, Q.; Ranjith, P.G.; Long, X.; Kang, Y.; Huang, M.: A review of shale swelling by water adsorption. J. Natl. Gas Sci. Eng. 27, 1421–1431 (2015). https://doi.org/10.1016/j.jngse.2015.10.004

    Article  Google Scholar 

  8. Anderson, R.L.; Ratcliffe, I.; Greenwell, H.C.; Williams, P.A.; Cliffe, S.; Coveney, P.V.: Clay swelling—a challenge in the oilfeld. Earth-Sci. Rev. 98, 201–216 (2010). https://doi.org/10.1016/j.earscirev.2009.11.003

    Article  Google Scholar 

  9. Al-Bazali, T.M.; Zhang, J.; Chenevert, M.E.; Sharma, M.M.: An experimental investigation on the impact of diffusion osmosis, chemical osmosis and capillary suction on shale alteration. J. Porous Media 11(8), 719–731 (2008). https://doi.org/10.1615/JPorMedia.v11.i8.20

    Article  Google Scholar 

  10. Van Oort, E.: On the physical and chemical stability of shales. J. Petrol. Sci. Eng. 38, 213–235 (2003). https://doi.org/10.1016/S0920-4105(03)00034-2

    Article  Google Scholar 

  11. Faruk, C.: Mechanism of Clay Swelling from Reservoir Formation Damage—Fundamentals, Modeling, Assessment, and Mitigation. Elsevier, Houston (2000)

    Google Scholar 

  12. de Carvalho, B.R.; Vidal, E.L.F.; Borges, M.R.: Design of experiments to evaluate clay swelling inhibition by different combinations of organic compounds and inorganic salts for application in water base drilling fluids. Appl. Clay Sci. 105, 124–130 (2015). https://doi.org/10.1016/j.clay.2014.12.029

    Article  Google Scholar 

  13. Alcázar-Vara, L.A.; Cortés-Monroy, I.R.: Drilling fluids for deepwater fields: an overview. Recent Insights Pet. Sci. Eng. (2018). https://doi.org/10.5772/intechopen.70093

    Article  Google Scholar 

  14. Gholami, R.; Elochukwu, H.; Fakhari, N.; Sarmadivaleh, M.: A review on borehole instability in active shale formations: Interactions, mechanisms and inhibitors. Earth Sci. Rev. 177, 2–13 (2018). https://doi.org/10.1016/j.earscirev.2017.11.002

    Article  Google Scholar 

  15. Testamanti, M.N.; Rezaee, R.: Determination of NMR T2 cut-off for clay bound water in shales: a case study of Carynginia Formation, Perth Basin, Western Australia. J. Petrol. Sci. Eng. 149, 497–503 (2017)

    Article  Google Scholar 

  16. Wang, H.; Rezaee, R.; Saeedi, A.: Preliminary study of improving reservoir quality of tight gas sands in the near wellbore region by microwave heating. J. Natl. Gas Sci. Eng. V 32, 395–406 (2016). https://doi.org/10.1016/j.jngse.2016.04.041

    Article  Google Scholar 

  17. Liu, P.; Wang, X.; Meng, Q.; Wang, X.; Zhang, L.; Liu, C.; Lei, Y.; Jiang, Ch.; Yin, J.: Simulation of shale gas generation by using different experimental systems: a case study from Chang7 shale in the Ordos Basin. J. Nat. Gas Sci. Eng. 49, 169–178 (2018). https://doi.org/10.1016/j.jngse.2017.10.017

    Article  Google Scholar 

  18. Brown, M.E.; Maciejewski, M.; Vyazovkin, S.; Nomen, R.; Sempere, J.; Burnham, A.; Opfermann, J.; Strey, R.; Anderson, H.L.; Kemmler, A.; Keuleers, R.; Janssens, J.; Desseyn, H.O.; Keuleers, R.: Computational aspects of kinetic analysis: part A: the ICTAC kinetics project-data, methods and results. Thermochim. Acta 355(1–2), 125–143 (2000). https://doi.org/10.1016/S0040-6031(00)00443-3

    Article  Google Scholar 

  19. Wang, H.; Ajao, O.; Economides, M.J.: Conceptual study of thermal stimulation in shale gas formations. J. Natl. Gas Sci. Eng. 21, 874–885 (2014)

    Article  Google Scholar 

  20. Santos, H.D.; Gupta, A.: Application of thermal analysis to characterize clay-rich formations. In: Technical Meeting/Petroleum Conference of the South Saskatchewan Section. Petroleum Society of Canada (1997). https://doi.org/10.2118/97-189

  21. Chen, G.; Yan, J.; Lili, L.; Zhang, J.; Gu, X.; Song, H.: Preparation and performance of amine-tartaric salt as potential clay swelling inhibitor. Appl. Clay Sci. 138, 12–16 (2017)

    Article  Google Scholar 

  22. Bouamoud, R.; Moine, E.C.; Mulongo-Masamba, R.; El Hamidi, A.; Halim, M.; Arsalane, S.: Type I kerogen-rich oil shale from the Democratic Republic of the Congo: mineralogical description and pyrolysis kinetics. Pet. Sci. 17(1), 255–267 (2020)

    Article  Google Scholar 

  23. Zhang, J.; Ding, Y.; Du, W.; Lu, K.; Sun, L.: Study on pyrolysis kinetics and reaction mechanism of Beizao oil shale. Fuel 296, 120696 (2021)

    Article  Google Scholar 

  24. Braun, R.L.; Burnham, A.K.; Reynolds, J.G.; Clarkson, J.E.: Pyrolysis kinetics for lacustrine and marine source rocks by programmed micropyrolysis. Energy Fuels 5, 192–204 (1991). https://doi.org/10.1021/ef00025a033

    Article  Google Scholar 

  25. PEMEX Business Plan 2019–2023

  26. Srodon, J.; Drits, V.A.; McCarty, D.K.; Hsieh, J.C.; Eberl, D.D.: Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations. Clays Clay Miner. 49(6), 514–528 (2001). https://doi.org/10.1346/CCMN.2001.0490604

    Article  Google Scholar 

  27. Reed, S.J.B.: Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  28. Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N.: ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520, 1–19 (2011). https://doi.org/10.1016/j.tca.2011.03.034

    Article  Google Scholar 

  29. Coats, A.W.; Redfern, J.P.: Kinetic parameters from thermogravimetric data. Nature 201(4914), 68–69 (1964). https://doi.org/10.1038/201068a0

    Article  Google Scholar 

  30. Jankovic, B.: Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods. Chem. Eng. J. 139, 128–135 (2008). https://doi.org/10.1016/j.cej.2007.07.085

    Article  Google Scholar 

  31. Doyle, C.D.: Estimating isothermal life from thermogravimetric data. J. Appl. Polym. Sci. 6, 639–642 (1962). https://doi.org/10.1002/app.1962.070062406

    Article  Google Scholar 

  32. Huang, C.; Zhang, J.; Hua, W.; Yue, J.; Lu, Y.: Sedimentology and lithofacies of lacustrine shale: a case study from the Dongpu sag, Bohai Bay Basin, Eastern China. J. Nal. Gas Sci. Eng. 60, 174–189 (2018). https://doi.org/10.1016/j.jngse.2018.10.014

    Article  Google Scholar 

  33. Santos, H.; Rego, L.F.B.; da Fontoura, S.A.B.: Integrated study of shale stability in deepwater, Brazil. In: Latin American and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers (1997). https://doi.org/10.2118/38961-MS

  34. Yang, F.; Ning, Z.; Liu, H.: Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel 115, 378–384 (2014). https://doi.org/10.1016/j.fuel.2013.07.040

    Article  Google Scholar 

  35. Chen, W.; Lei, Y.; Chen, Y.; Sun, J.: Pyrolysis and combustion enhance recovery of gas for two China shale rocks. Energy Fuels 30, 10298–10305 (2016). https://doi.org/10.1021/acs.energyfuels.6b02274

    Article  Google Scholar 

  36. Santos, H.M.R.: A new conceptual approach to shale stability. Ph.D. Thesis, University of Oaklahoma (1997)

  37. Brown, M.E.; Gallagher, P.K.: Handbook of Thermal Analysis and Calorimetry Volume 2. Applications to Inorganic and Miscellaneous Materials Handbook of Thermal Analysis and Calorimetry. Elsevier, Amsterdam (2003)

  38. Gips, J.P.; Daigle, H.; Sharma, M.: Characterization of free and bound fluids in hydrocarbon bearing shales using NMR and Py GC-ms. In: Unconventional Resources Technology Conference, Denver, Colorado, 25–27 August 2014 (pp. 1217–1225). Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers (2014). https://doi.org/10.15530/urtec-2014-1917686

  39. Chen, S.; Han, Y.; Fu, C.; Zhang, H.; Zhu, Y.; Zuo, Z.: Micro and nano-size pores of clay minerals in shale reservoirs: implication for the accumulation of shale gas. Sed. Geol. 342, 180–190 (2016). https://doi.org/10.1016/j.sedgeo.2016.06.022

    Article  Google Scholar 

  40. Wilson, M.J.; Wilson, L.: Clay mineralogy and shale instability: an alternative conceptual analysis. Clay Miner. 49(2), 127–145 (2014). https://doi.org/10.1180/claymin.2014.049.2.01

    Article  Google Scholar 

  41. Lee, S.; Fischer, T.B.; Stokes, M.R.; Klingler, R.J.; Ilavsky, J.; McCarty, D.K.; Wigand, M.O.; Derkowski, A.; Winans, R.E.: Dehydration effect on the pore size, porosity, and fractal parameters of shale rocks: Ultrasmall-angle X-ray scattering study. Energy Fuels 28(11), 6772–6779 (2014). https://doi.org/10.1021/ef501427d

    Article  Google Scholar 

  42. Ondro, T.; Al-Shantir, O.; Obert, F.; Trník, A.: Non-isothermal kinetic analysis of illite dehydroxylation. In: AIP Conference Proceedings (Vol. 2133, No. 1, p. 020036). AIP Publishing LLC (2019). https://doi.org/10.1063/1.5120166

  43. Maciejewski, M.: Computational aspects of kinetic analysis: Part B: The ICTAC Kinetics Project—the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield. Thermochim. Acta 355(1–2), 145–154 (2000). https://doi.org/10.1016/S0040-6031(00)00444-5

    Article  Google Scholar 

  44. Maitra, S.; Bandyopadhyay, N.; Das, S.; Pal, A.J.; Pramanik, J.: Non-isothermal decomposition kinetics of alkaline earth metal carbonates. J. Am. Ceram. Soc. 90, 1299–1303 (2007). https://doi.org/10.1111/j.1551-2916.2007.01607.x

    Article  Google Scholar 

  45. O’Brien, D.E.; Chenevert, M.E.: Stabilizing sensitive shales with inhibited potassium-based drilling fluids. J. Pet. Technol. (1973). https://doi.org/10.2118/4232-PA

    Article  Google Scholar 

  46. Al-Bazali, T.M.: The consequences of using concentrated salt solutions for mitigating wellbore instability in shales. J. Petrol. Sci. Eng. 80(1), 94–101 (2011). https://doi.org/10.1016/j.petrol.2011

    Article  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to the Instituto Mexicano del Petróleo (IMP) for both providing facilities and granting permission to publish results. This work was supported by the IMP and Sectorial Fund SENER (Secretary of Energy)-CONACyT (National Council of Science and Technology in Mexico)-Hydrocarbons through the “Center of Technology for Deep Water (CTAP)” project. Guerrero-Hernández J. thanks both UNAM and CONACYT for the financial support granted during her Master of Engineering Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Alcázar-Vara.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcázar-Vara, L.A., Guerrero-Hernández, J. & Cortés-Monroy, I.R. Thermal Analysis of Shale from a Mexican Deepwater Gas Field. Arab J Sci Eng 47, 7335–7349 (2022). https://doi.org/10.1007/s13369-021-06281-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06281-4

Keywords

Navigation