Skip to main content
Log in

A Visual Management System for Structural Health Monitoring Based on Web-BIM and Dynamic Multi-source Monitoring Data-driven

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Structural health monitoring (SHM) is one of the important works in the construction and maintenance stage. Since the sensors are widely distributed in space of building with huge and complex spatial structures, it is difficult to visualize and locate the hazard sources intuitively in 2D drawings. In this study, a visual warning framework for SHM is proposed based on the Web-BIM platform. Two modes are proposed to correlate the elements in building information model (BIM) with the sensors, the system makes the monitoring area correspond to the BIM model then realizes the visualization of sensors and monitoring areas on the BIM platform. Meanwhile, a Web-BIM application is developed which realizes the visualization of monitoring data and automatic warning by linking the database and background control with a web UI interface. This study also integrates IoT technology to automatically control the indicator lights based on real-time sensor data. The BIM model displays the virtual monitoring space and warning information, simultaneously combined with the on-site warning lights to convey the hazard information. The framework can be copied and applied to the development of the corresponding system, and the web application can easily realize the application of different projects. The research can provide a practical reference for remote structural health monitoring and safety management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Humar, J.L.; Amin, M.S.: Structural health monitoring. Struct. Eng. Mech. Comput. 6531(8), 1185–1193 (2001). https://doi.org/10.1016/B978-0-12-088760-6.X5001-6

    Article  Google Scholar 

  2. Farrar, C.R.; Worden, K.: An introduction to structural health monitoring. Philos. Trans. A Math. Phys. Eng. Sci. 365(1851), 303–315 (2007). https://doi.org/10.1098/rsta.2006.1928

    Article  Google Scholar 

  3. Annamdas, V.G.M.; Bhalla, S.; Soh, C.K.: Applications of structural health monitoring technology in Asia. Struct. Health Monit. 16(3), 324–346 (2017). https://doi.org/10.12783/SHM2015/1

    Article  Google Scholar 

  4. Volk, R.; Stengel, J.; Schultmann, F.: Building information modeling (BIM) for existing buildings: literature review and future needs. Autom. Const. 38, 109–127 (2014). https://doi.org/10.1016/j.autcon.2013.10.023

    Article  Google Scholar 

  5. Liu, Z.; Lu, Y.; Peh, L.C.: A review and scientometric analysis of global building information modeling (BIM) research in the architecture, engineering and construction (AEC) industry. Buildings 9(10), 210 (2019). https://doi.org/10.3390/buildings9100210

    Article  Google Scholar 

  6. Liu, X.; Wang, X.; Wright, G.; Cheng, J.C.; Li, X.; Liu, R.: A state-of-the-art review on the integration of Building information modeling (BIM) and geographic information system (GIS). ISPRS Int. J. Geo-Inform. 6(2), 53 (2017). https://doi.org/10.3390/ijgi6020053

    Article  Google Scholar 

  7. Zhu, J.; Wang, X.; Wang, P.; Wu, Z.; Kim, M.J.: Integration of BIM and GIS: geometry from IFC to shapefile using open-source technology. Autom. Const. 102, 105–119 (2019). https://doi.org/10.1016/j.autcon.2019.02.014

    Article  Google Scholar 

  8. Ma, G.; Jiang, J.; Shang, S.: Visualization of component status information of prefabricated concrete building based on building information modeling and radio frequency identification: a case study in China. Adv. Civil Eng. 2019, 1–13 (2019). https://doi.org/10.1155/2019/6870507

    Article  Google Scholar 

  9. Lin, Y.-C.; Chen, Y.-P.; Yien, H.-W.; Huang, C.-Y.; Su, Y.-C.: Integrated BIM, game engine and VR technologies for healthcare design: a case study in cancer hospital. Adv. Eng. Inform. 36, 130–145 (2018). https://doi.org/10.1016/j.aei.2018.03.005

    Article  Google Scholar 

  10. Wang, X.; Love, P.E.; Kim, M.J.; Park, C.-S.; Sing, C.-P.; Hou, L.: A conceptual framework for integrating building information modeling with augmented reality. Autom. Const. 34, 37–44 (2013). https://doi.org/10.1016/j.autcon.2012.10.012

    Article  Google Scholar 

  11. Chen, H.-M.; Chang, K.-C.; Lin, T.-H.: A cloud-based system framework for performing online viewing, storage, and analysis on big data of massive BIMs. Autom. Const. 71, 34–48 (2016). https://doi.org/10.1016/j.autcon.2016.03.002

    Article  Google Scholar 

  12. Han, K.K.; Golparvar-Fard, M.: Potential of big visual data and building information modeling for construction performance analytics: an exploratory study. Autom. Const. 73, 184–198 (2017). https://doi.org/10.1016/j.autcon.2016.11.004

    Article  Google Scholar 

  13. Dimitrov, A.; Golparvar-Fard, M.: Vision-based material recognition for automated monitoring of construction progress and generating building information modeling from unordered site image collections. Adv. Eng. Inform. 28(1), 37–49 (2014). https://doi.org/10.1016/j.aei.2013.11.002

    Article  Google Scholar 

  14. Martínez, M.D.; López-Alonso, M.; Martínez-Rojas, M.: Building information modeling and safety management: a systematic review. Saf. Sci. 101, 11–18 (2018). https://doi.org/10.1016/j.ssci.2017.08.015

    Article  Google Scholar 

  15. Wang, M.; Deng, Y.; Won, J.; Cheng, J.C.P.: An integrated underground utility management and decision support based on BIM and GIS. Autom. Const. 107, 102931 (2019). https://doi.org/10.1016/j.autcon.2019.102931

    Article  Google Scholar 

  16. Li, C.Z.; Xue, F.; Li, X.; Hong, J.; Shen, G.Q.: An internet of things-enabled BIM platform for on-site assembly services in prefabricated construction. Autom. Const. 89, 146–161 (2018). https://doi.org/10.1016/j.autcon.2018.01.001

    Article  Google Scholar 

  17. Tang, S.; Shelden, D.R.; Eastman, C.M.; Pishdad-Bozorgi, P.; Gao, X.: A review of building information modeling (BIM) and the internet of things (IoT) devices integration: present status and future trends. Autom. Const. 101, 127–139 (2019). https://doi.org/10.1016/j.autcon.2019.01.020

    Article  Google Scholar 

  18. Tsai, Y.-H.; Wang, J.; Chien, W.-T.; Wei, C.-Y.; Wang, X.; Hsieh, S.-H.: A BIM-based approach for predicting corrosion under insulation. Autom. Const. 107, 102923 (2019). https://doi.org/10.1016/j.autcon.2019.102923

    Article  Google Scholar 

  19. Abdelgawad, A.; Yelamarthi, K.: Internet of things (IoT) platform for structure health monitoring. Wireless Commun. Mobile Comput. (2017). https://doi.org/10.1155/2017/6560797

    Article  Google Scholar 

  20. Riaz, Z.; Arslan, M.; Kiani, A.K.; Azhar, S.: CoSMoS: a BIM and wireless sensor based integrated solution for worker safety in confined spaces. Autom. Const. 45, 96–106 (2014). https://doi.org/10.1016/j.autcon.2014.05.010

    Article  Google Scholar 

  21. Lee, G.; Cho, J.; Ham, S.; Lee, T.; Lee, G.; Yun, S.-H.; Yang, H.-J.: A BIM- and sensor-based tower crane navigation system for blind lifts. Autom. Const. 26, 1–10 (2012). https://doi.org/10.1016/j.autcon.2012.05.002

    Article  Google Scholar 

  22. Kensek, K.: Integration of Environmental sensors with BIM: case studies using arduino, dynamo, and the revit API. Informes De La Const. 66(536), 31–39 (2014). https://doi.org/10.3989/ic.13.151

    Article  Google Scholar 

  23. Chen, X.-S.; Liu, C.-C.; Wu, I.C.: A BIM-based visualization and warning system for fire rescue. Adv. Eng. Inform. 37, 42–53 (2018). https://doi.org/10.1016/j.aei.2018.04.015

    Article  Google Scholar 

  24. Riaz, Z.; Parn, E.A.; Edwards, D.J.; Arslan, M.; Shen, C.; Pena-Mora, F.: BIM and sensor-based data management system for construction safety monitoring. J. Eng. Des. Technol. 15, 738–753 (2017). https://doi.org/10.1108/JEDT-03-2017-0017

    Article  Google Scholar 

  25. Theiler, M.; Smarsly, K.: IFC monitor: an IFC schema extension for modeling structural health monitoring systems. Adv. Eng. Inform. 37, 54–65 (2018). https://doi.org/10.1016/j.aei.2018.04.011

    Article  Google Scholar 

  26. Smarsly, K., Tauscher, E.: Monitoring information modeling for semantic mapping of structural health monitoring systems. In: Proceedings of the 16th International Conference on Computing in Civil and Building Engineering (2016)

  27. Iwendi, C.; Moqurrab, S.A.; Anjum, A.; Khan, S.; Mohan, S.; Srivastava, G.: N-Sanitization: a semantic privacy-preserving framework for unstructured medical datasets. Comput. Commun. 161, 160–171 (2020). https://doi.org/10.1016/j.comcom.2020.07.032

    Article  Google Scholar 

  28. Faheem, M.; Fizza, G.; Ashraf, M.W.; Butt, R.A.; Ngadi, M.A.; Gungor, V.C.: Big data acquired by internet of things-enabled industrial multichannel wireless sensors networks for active monitoring and control in the smart grid industry 4.0. Data Brief 35, 106854–106854 (2021). https://doi.org/10.1016/j.dib.2021.106854

    Article  Google Scholar 

  29. Shabbir, M.; Shabbir, A.; Iwendi, C.; Javed, A.R.; Rizwan, M.; Herencsar, N.; Lin, J.C.-W.: Enhancing security of health information using modular encryption standard in mobile cloud computing. IEEE Access 9, 8820–8834 (2021). https://doi.org/10.1109/access.2021.3049564

    Article  Google Scholar 

  30. Pan, Y.; Zhang, L.: A BIM-data mining integrated digital twin framework for advanced project management. Autom. Const. (2021). https://doi.org/10.1016/j.autcon.2021.103564

    Article  Google Scholar 

  31. Guo, H.; Wang, R.: Study on BIM-based health monitoring information and its visualization realization. Const. Technol. 46(S1), 510–513 (2017)

    MathSciNet  Google Scholar 

  32. Li, H.; Ou, J.; Zhao, X.; Zhou, W.; Li, H.; Zhou, Z.; Yang, Y.: Structural health monitoring system for the Shandong Binzhou Yellow River highway bridge. Comput. Aided Civil Infrastruct. Eng. 21(4), 306–317 (2006). https://doi.org/10.1111/j.1467-8667.2006.00437.x

    Article  Google Scholar 

  33. Desjardins, S.L.; Londono, N.A.; Lau, D.T.; Khoo, H.: Real-time data processing, analysis and visualization for structural monitoring of the confederation bridge. Adv. Struct. Eng. 9(1), 141–157 (2006). https://doi.org/10.1260/136943306776232864

    Article  Google Scholar 

  34. Delgado, J.M.D.; Butler, L.J.; Gibbons, N.; Brilakis, I.; Elshafie, M.Z.E.B.; Middleton, C.: Management of structural monitoring data of bridges using BIM. Proc. Instit. Civil Eng. Bridge Eng. 170(3), 204–218 (2017). https://doi.org/10.1680/jbren.16.00013

    Article  Google Scholar 

  35. Ni, Y.; Lin, K.; Wu, L.; Wang, Y.: Visualized spatiotemporal data management system for lifecycle health monitoring of large-scale structures. J. Aerosp. Eng. 30(2), B4016007 (2017). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000622

    Article  Google Scholar 

  36. Ciampoli, L.B., Gagliardi, V., Calvi, A., D'Amico, F., Tosti, F.: Automatic network level bridge monitoring by integration of InSAR and GIS catalogues. In: Multimodal sensing: technologies and applications 2019, p. 110590I. International Society for Optics and Photonics (2019)

  37. Tsilimantou, E.; Delegou, E.T.; Nikitakos, I.A.; Ioannidis, C.; Moropoulou, A.: GIS and BIM as integrated digital environments for modeling and monitoring of historic buildings. Appl. Sci. 10(3), 1078 (2020). https://doi.org/10.3390/app10031078

    Article  Google Scholar 

  38. Chen, B.; Liu, W.: A web-based structural health monitoring sensor network. Int. J. Comput. Appl. Technol. 44(3), 188–197 (2012). https://doi.org/10.1504/ijcat.2012.049082

    Article  Google Scholar 

  39. Providakis, C.; Liarakos, E.: Web-based concrete strengthening monitoring using an innovative electromechanical impedance telemetric system and extreme values statistics. Struct. Control Health Monit. 21(9), 1252–1268 (2014). https://doi.org/10.1002/stc.1645

    Article  Google Scholar 

  40. Zhu, C.; Yan, Z.; Lin, Y.; Xiong, F.; Tao, Z.: Design and application of a monitoring system for a deep railway foundation pit project. IEEE Access 7, 107591–107601 (2019). https://doi.org/10.1109/ACCESS.2019.2932113

    Article  Google Scholar 

  41. Wang, S., Du, J., Song, J.: A framework of BIM-based bridge health monitoring system. In: Proceedings of the 2016 international conference on civil, transportation and environment 2016. Atlantis Press (2016)

  42. Zhou, X.; Wang, J.; Guo, M.; Gao, Z.: Cross-platform online visualization system for open BIM based on WebGL. Multimedia Tools Appl. 78(20), 28575–28590 (2019). https://doi.org/10.1007/s11042-018-5820-0

    Article  Google Scholar 

  43. Xu, Z.; Zhang, L.; Li, H.; Lin, Y.H.; Yin, S.: Combining IFC and 3D tiles to create 3D visualization for building information modeling. Autom. Const. 109, 16 (2020). https://doi.org/10.1016/j.autcon.2019.102995

    Article  Google Scholar 

  44. Afsari, K.; Eastman, C.M.; Castro-Lacouture, D.: JavaScript object notation (JSON) data serialization for IFC schema in web-based BIM data exchange. Autom. Const. 77, 24–51 (2017). https://doi.org/10.1016/j.autcon.2017.01.011

    Article  Google Scholar 

  45. Liu, X.; Xie, N.; Tang, K.; Jia, J.: Lightweighting for Web3D visualization of large-scale BIM scenes in real-time. Graph. Models 88, 40–56 (2016). https://doi.org/10.1016/j.gmod.2016.06.001

    Article  MathSciNet  Google Scholar 

  46. Liu, X.J., Xie, N., Jia, J.Y.: WebVis_BIM: Real time Web3D visualization of big BIM Data. In: Proceedings of the 14th Acm Siggraph international conference on virtual reality continuum and its applications in industry, Vrcai 2015. Assoc Computing Machinery, New York (2015)

  47. Xu, Z.; Zhang, Y.; Xu, X.Y.: 3D visualization for building information models based upon IFC and WebGL integration. Multimedia Tools Appl. 75(24), 17421–17441 (2016). https://doi.org/10.1007/s11042-016-4104-9

    Article  Google Scholar 

  48. Diez, H.V.; Segura, A.; Garcia-Alonso, A.; Oyarzun, D.: 3D model management for e-commerce. Multimedia Tools Appl. 76(20), 21011–21031 (2017). https://doi.org/10.1007/s11042-016-4047-1

    Article  Google Scholar 

  49. Chen, Y.Q.; Shooraj, E.; Rajabifard, A.; Sabri, S.: From IFC to 3D tiles: an integrated open-source solution for visualising BIMs on cesium. Isprs Int. J. Geo-Inform. 7(10), 12 (2018). https://doi.org/10.3390/ijgi7100393

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support provided by the Co-funding of the National Natural Science Foundation of China and Shenhua Group Corporation Ltd (Grant No. U1261212) and the Program of Major Achievements Transformation and Industrialization of Beijing Education Commission (Grant No. ZDZH20141141301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, G., Li, L., Xu, Z. et al. A Visual Management System for Structural Health Monitoring Based on Web-BIM and Dynamic Multi-source Monitoring Data-driven. Arab J Sci Eng 47, 4731–4748 (2022). https://doi.org/10.1007/s13369-021-06268-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06268-1

Keywords

Navigation