Skip to main content
Log in

Thermodynamics Examination of Fe3O4-CoFe2O4/Water + EG Nanofluid in a Heated Plate: Crosswise and Stream-wise Aspects

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This research work executes the activation energy and covalent bonding reaction aspects in the flow of hybrid ferroliquid across a stream-wise and crosswise position. Substance of Fe3O4 and CoFe2O4 are mixed with base liquid water + EG is considered as hybrid ferroliquid. Usual form of heat absorption and heat generation is taken in the thermal equation and magnetic field is taken in the momentum equation. The ODEs are obtained by conversion of PDEs through transformation and solved by RKF-45 scheme. Comparison of ferroliquid and hybrid ferroliquid is made with flow variables and presented in graph format. Computational values of heat transportation rate, mass transportation rate and drag friction are displayed through tabular data. Upshot bring out that the reaction rate decays the concentration while activation energy enrich the temperature. Also in both stream-wise and crosswise position, hybrid ferroliquid is lower than ferroliquid and which is same in concentration but reverted in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

\(B_{0}\) :

Magnetic field

\(C\) :

Concentration of the fluid

\(C_{w}\) :

Concentration at wall

\(C_{\infty }\) :

Concentration of the ambient fluid

\(C_{fx}\) :

Coefficient of skin friction

\(C_{fz}\) :

Coefficient of skin friction

\(Cp\) :

Specific heat

\(D\) :

Diffusivity

\(E\) :

Activation energy parameter

\(E_{a}\) :

Activation energy

\(k\) :

Thermal Conductivity

\(K\) :

Boltzmann’s constant

\(K_{r1}^{2}\) :

Reaction rate

\(M\) :

Magnetic parameter

\(n\) :

Fitted rate constant

\(Nu\) :

Nusselt number

\(\Pr\) :

Prandtl number

\(Q\) :

Heat source sink parameter

\(Q_{1}\) :

Uniform heat source/sink parameter

\(Rc\) :

Reaction rate parameter

\({\text{Re}}\) :

Local Reynolds number

\(Sc\) :

Schmidt number

\(Sh\) :

Sherwood number

\(T\) :

Temperature of the fluid

\(T_{w}\) :

Temperature at the wall

\(T_{\infty }\) :

Ambient temperature

\(U_{w}\) :

Constant velocity

\(U_{\infty }\) :

Free stream velocity

\(u,\,v\& w\) :

Velocity components

\(x,\,y\& \,z\) :

Cartesian coordinates

\(\nu\) :

Kinematic Viscosity

\(\mu\) :

Dynamic Viscosity

\(\rho\) :

Density

\(\phi\) :

Solid volume fraction

\(\Psi\) :

Stream function

\(\delta\) :

Temperature difference parameter

\(\lambda\) :

Moving parameter

\(\alpha\) :

Thermal diffusivity

\(\rho Cp\) :

Heat capacitance

\(hnf\) :

Hybrid nanofluid

\(nf\) :

Nanofluid

\(f\) :

Base fluid

\(1s\) :

Solid particles of Fe3O4

\(2s\) :

Solid particles of CoFe2O4

ODEs:

Ordinary differential equations

PDEs:

Partial differential equations

RKF-45:

Runge–Kutta–Fehlberg-45

EG:

Ethylene glycol

References

  1. Ramesh, G.K.: Influence of shape factor on hybrid nanomaterial in a cross flow direction with viscous dissipation. Phys. Scr. 94, 105224 (2019).

  2. Anantha Kumar, K.; Sandeep, N.; Sugunamma, V.; Animasaun, I.L.: Effect of irregular heat source/sink on the radiative thin film flow of MHD hybrid ferrofluid. J Therm Anal Calorim. 139, 2145–2153 (2020)

    Article  Google Scholar 

  3. Shah, Z.; Alzahrani, E.O.; Dawar, A.; Ullah, A.; Khan, I.: Influence of Cattaneo-Christov model on Darcy-Forchheimer flow of Micropolar Ferrofluid over a stretching/shrinking sheet. Int. Commun. Heat Mass Transf. 110, 104385 (2020).

  4. Madhukesh, J.K.; Ramesh, G.K.; Varun Kumar, R.S.; Prasannakumara, B.C.; Kbiri Alaoui, M.: Computational study of chemical reaction and activation energy on the flow of Fe3O4-Go/water over a moving thin needle: Theoretical aspects. Comput. Theoret. Chem. 1202, 113306 (2021).

  5. Khan, W.A.; Sultan, F.; Ali, M.; Shahzad, M.; Khan, M.; Irfan, M.: Consequences of activation energy and binary chemical reaction for 3D flow of Cross-nanofluid with radiative heat transfer. J Braz. Soc. Mech. Sci. Eng. 41, 4 (2019)

    Article  Google Scholar 

  6. Ramesh, G.K.; Shehzad, S.A.: Analysis of melting heat transport in a cross flow direction: a comparative study. Commun. Theor. Phys. 70, 777 (2018)

    Article  MathSciNet  Google Scholar 

  7. Mabood, F.; Nayak, M.K.; Chamkha, A.J.: Heat transfer on the cross flow of micropolar fluids over a thin needle moving in a parallel stream influenced by binary chemical reaction and Arrhenius activation energy. Eur. Phys. J. Plus. 134, 427 (2019)

    Article  Google Scholar 

  8. Nayak, M.K.; Pandey, V.S.; Tripathi, D.; Akbar, N.S.; Makinde, O.D.: 3D MHD cross flow over an exponential stretching porous surface. Heat Transfer. 49, 1256–1280 (2020)

    Article  Google Scholar 

  9. Khan, U.; Zaib, A.; Khan, I.; Nisar, K.S.: Activation energy on MHD flow of titanium alloy (Ti6Al4V) nanoparticle along with a cross flow and streamwise direction with binary chemical reaction and non-linear radiation: dual solutions. J. Market. Res. 9, 188–199 (2020)

    Google Scholar 

  10. Hayat, T.; Riaz, R.; Aziz, A.; Alsaedi, A.: Influence of Arrhenius activation energy in MHD flow of third grade nanofluid over a nonlinear stretching surface with convective heat and mass conditions. Physica A Stat. Mech. Appl. 549, 124006 (2020)..

  11. Madhukesh, J.K.; Ramesh, G.K.; Prasannakumara, B.C.; Shehzad, S.A.; Abbasi, F.M.: Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy. Appl. Math. Mech.-Engl. Ed. 42, 1191–1204 (2021)

    Article  MathSciNet  Google Scholar 

  12. Waqas, M.; Jabeen, S.; Hayat, T.; Shehzad, S.A.; Alsaedi, A.: Numerical simulation for nonlinear radiated Eyring-Powell nanofluid considering magnetic dipole and activation energy. Int. Commun. Heat Mass Transf. 112, 104401 (2020).

  13. Ijaz, M.; Yousaf, M.; El Shafey, A.M.: Arrhenius activation energy and joule heating for walter-B fluid with Cattaneo-Christov double-diffusion model. J Therm Anal Calorim. 143, 3687–3698 (2021)

    Article  Google Scholar 

  14. Ramesh, G.K.; Madhukesh, J.K.; Prasannakumara, B.C.; Roopa, G.S.: Significance of aluminium alloys particle flow through a parallel plates with activation energy and chemical reaction. J. Therm. Anal. Calorim. (2021). https://doi.org/10.1007/s10973-021-10981-2

    Article  Google Scholar 

  15. Khan, S.U.; Shehzad, S.A.: Brownian movement and thermophoretic aspects in third-grade nanofluid over oscillatory moving sheet. Phys. Scr. 94, 095202 (2019).

  16. Ramesh, G.K.; Manjunatha, S.; Roopa, G.S.; Chamkha, A.J.: Hybrid (ND-Co3O4/EG) nanoliquid through a permeable cylinder under homogeneous-heterogeneous reactions and slip effects. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-10106-1

    Article  Google Scholar 

  17. Ramesh, G.K.; Shehzad, S.A.; Tlili, I.: Hybrid nanomaterial flow and heat transport in a stretchable convergent/divergent channel: a Darcy-Forchheimer model. Appl. Math. Mech.-Engl. Ed. 41, 699–710 (2020)

    Article  MathSciNet  Google Scholar 

  18. Madhukesh, J.K.; Ramesh, G.K.; Aly, E.H.; Chamkha, A.J.: Dynamics of water conveying SWCNT nanoparticles and swimming microorganisms over a Riga plate subject to heat source/sink. Alexandria Eng. J. (2021). https://doi.org/10.1016/j.aej.2021.06.104

    Article  Google Scholar 

  19. Mohamed, M.K.A.; Yasin, S.H.M.; Salleh, M.Z.; Alkasasbeh, H.T.: MHD stagnation point flow and heat transfer over a stretching sheet in a blood-based casson ferrofluid with newtonian heating. J. Adv. Res. Fluid Mech. Therm. Sci. 82, 1–11 (2021)

    Article  Google Scholar 

  20. Kumar, R.N.; Gowda, R.J.P.; Madhukesh, J.K.; Prasannakumara, B.C.; Ramesh, G.K.: Impact of thermophoretic particle deposition on heat and mass transfer across the dynamics of Casson fluid flow over a moving thin needle. Phys. Scr. 96, 075210 (2021).

  21. Weidman, P.: New solutions for laminar boundary layers with cross flow. Z. Angew. Math. Phys. 48, 341–356 (1997)

    Article  MathSciNet  Google Scholar 

  22. Rizwan-ul-Haq, Soomro, F.A.; Khan, Z.H.; Al-Mdallal, Q.M.: Numerical study of streamwise and cross flow in the presence of heat and mass transfer. Eur. Phys. J. Plus. 132, 214 (2017).

  23. Usman, M.; Hamid, M.; Zubair, T.; Ul Haq, R.; Wang, W.: Cu-AlO/Water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM. Int. J. Heat Mass Transf. 126, 1347–1356 (2018)

    Article  Google Scholar 

  24. Rashad, A.M.; Chamkha, A.J.; Ismael, M.A.; Salah, T.: Magnetohydrodynamics Natural Convection in a Triangular Cavity Filled With a Cu-Al2O3/Water Hybrid Nanofluid With Localized Heating From Below and Internal Heat Generation. J. Heat Transf. 140, 072502 (2018).

  25. Ishak, A.; Nazar, R.; Pop, I.: The effects of transpiration on the flow and heat transfer over a moving permeable surface in a parallel stream. Chem. Eng. J. 148, 63–67 (2009)

    Article  Google Scholar 

  26. Cortell, R.: Flow and heat transfer in a moving fluid over a moving flat surface. Theor. Comput. Fluid Dyn. 21, 435–446 (2007)

    Article  Google Scholar 

  27. Waini, I.; Ishak, A.; Pop, I.: Flow and heat transfer of a hybrid nanofluid past a permeable moving surface. Chin. J. Phys. 66, 606–619 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shehzad.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, G.K., Madhukesh, J.K., Prasannakumara, B.C. et al. Thermodynamics Examination of Fe3O4-CoFe2O4/Water + EG Nanofluid in a Heated Plate: Crosswise and Stream-wise Aspects. Arab J Sci Eng 47, 8351–8360 (2022). https://doi.org/10.1007/s13369-021-06265-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06265-4

Keywords

Navigation