Skip to main content
Log in

Effect of Horizontal Spacing on Natural Convection Heat Transfer from Two Aligned Horizontal Cylinders in a Vented Enclosure

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Natural convection heat transfer from horizontally aligned two heated cylinders placed inside a square vented enclosure has been investigated numerically for laminar flow. The Navier–Stokes equations and energy equations have been employed to simulate the flow and thermal behaviors with a finite volume (SIMPLE) method to represent and evaluate the partial differential equations in the form of algebraic equations using ANSYS–FLUENT 16.1 Package. The study has employed a range of Rayleigh numbers from 103 to 107 with the variation of horizontal spacing between two cylinders and symmetrical open vent size with constant enclosure width. The results displayed that the average Nusselt number is increased with the increase of the Rayleigh number, spacing between cylinders, and opening size. The maximum enhancement range for average Nu is between 50 and 100% for low Ra and 20–30% for high Ra with full opening size and large spacing size. The variation of the local Nusselt numbers, streamlines, and isotherms displayed the effect of the Rayleigh number, opening size, and spacing between cylinders on the flow and thermal behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

d :

Cylinder diameter, m

g :

Gravitational acceleration, m/s2

h :

Heat transfer coefficient for air, W/m2 K

k :

Thermal conductivity of air, W/mK

L :

Enclosure length, m.

Nu:

Nusselt number, \( \frac{{hD}}{k} \).

o :

Opening size, m

O :

Dimensionless opening size

Pr:

Prandtl number

P :

Dimensionless pressure

Ra:

Rayleigh number,\( \frac{{g\beta \Delta TL^{3} \rho }}{{\mu \alpha }} \)

Re:

Reynolds number, \( \frac{{V_{{{\text{inlet}}}} L}}{\nu } \)

Ri:

Richardson number

s :

Spacing size between two cylinders, m

S :

Dimensionless spacing size between two cylinders

T :

Temperature, °C

u :

Axial velocity, m/s

v :

Transverse velocity, m/s

U :

Dimensionless velocity in x-direction

V :

Dimensionless velocity in y-direction

x :

Dimensional axial coordinate, m

y :

Dimensional transverse coordinate, m

X :

Dimensionless axial coordinate

Y :

Dimensionless transverse coordinate

α :

Thermal diffusivity, m2/s

β :

Volumetric thermal expansion coefficient, K–1

θ :

Dimensionless temperature

μ :

Dynamic viscosity, kg/ms

ρ :

Air density, kg/m3

av:

Average

eff:

Effective

e:

Enclosure

Inlet:

Lower opening inlet

c:

Cylinder surface

6. References

  1. Ali, O.: Numerical investigation of Prandtl number effects on the natural convection heat transfer from circular cylinder in an enclosed enclosure. Sci. J. Univ. Zakho 2(2), 358–374 (2014). https://doi.org/10.25271/sjuoz

    Article  Google Scholar 

  2. Nada, S.A.; Said, M.A.: Effects of fins geometries, arrangements, dimensions and numbers on natural convection heat transfer characteristics in finned-horizontal annulus. Int. J. Therm. Sci. 137, 121–137 (2019). https://doi.org/10.1016/j.ijthermalsci.2018.11.026

    Article  Google Scholar 

  3. Fourar, I.; Benmachiche, A.H.; Abboudi, S.: Effect of material and geometric parameters on natural convection heat transfer over an eccentric annular-finned tube. Int. J. Ambient Energy (2019). https://doi.org/10.1080/01430750.2019.1573757

    Article  Google Scholar 

  4. Talesh Bahrami, H.R., Safikhani, H.: Heat transfer enhancement inside an eccentric cylinder with an inner rotating wall using porous media: a numerical study. J. Therm. Anal. Calorim (2020). https://doi.org/10.1007/s10973-020-09532-y

  5. Shehzad, S.A.; Sheikholeslami, M.; Ambreen, T.; Shafee, A.; Babazadeh, H.; Ahmad, M.: Heat transfer management of hybrid nanofluid including radiation and magnetic source terms within a porous domain. Appl. Nanosci. 10(12), 5351–5359 (2020). https://doi.org/10.1007/s13204-020-01432-9

    Article  Google Scholar 

  6. Kahwaji, G.Y.; Hussien, A.S.; Ali, O.: Experimental investigation of natural convection heat transfer from square cross section cylinder in a vented enclosure. J. Univ. DUHOK Pure Eng. Sci. 16(1), 47 (2013). https://doi.org/10.26682/eissn.2521-4861

    Article  Google Scholar 

  7. Ali, O.; Zaidky, R.; Saleem, A.: Numerical investigation of natural convection heat transfer from circular cylinder inside an enclosure containing nanofluids. Int. J. Mech. Eng. Technol. 5(12), 66–85 (2014)

    Google Scholar 

  8. Ahmad, M.; Mabood, F.; Shehzad, S.A.; Taj, M.; Mehmood, F.M.: Convective heat and zero-mass flux conditions in the time-dependent second-grade nanofluid flow by unsteady bidirectional surface movement. Chin. J. Phys. (2021). https://doi.org/10.1016/j.cjph.2021.01.014

    Article  MathSciNet  Google Scholar 

  9. Rahmati, A.R.; Tahery, A.A.: Numerical study of nanofluid natural convection in a square cavity with a hot obstacle using lattice Boltzmann method. Alex. Eng. J. 57(3), 1271–1286 (2018). https://doi.org/10.1016/j.aej.2017.03.030

    Article  Google Scholar 

  10. Pandey, S.; Park, Y.G.; Ha, M.Y.: Unsteady analysis of natural convection in a square enclosure filled with non-Newtonian fluid containing an internal cylinder. Numer. Heat Transf. Part B Fundam. 77(1), 1–21 (2020). https://doi.org/10.1080/10407790.2019.1685838

    Article  Google Scholar 

  11. Ali, O.: Experimental and numerical investigation of natural convection heat transfer from different cross section cylinders in a vented enclosure. Ph.D., Mosul University (2008)

  12. Kahwaji, G.Y., Hussien, A.S., Ali, O.: Experimental investigation of natural convection heat transfer from rhombic cross section cylinder in a vented enclosure. J. Polytech. 1(1), 1–10 (2011)

    Article  Google Scholar 

  13. Kahwaji, G.Y.; Samaha, M.A.: Passive natural convection augmentation from horizontal cylinder using a novel shroud–chimney configuration. J. Thermophys. Heat Transf. 33(4), 1006–1017 (2019). https://doi.org/10.2514/1.T5686

    Article  Google Scholar 

  14. Karimi, F.; Xu, H.; Wang, Z.; Yang, M.; Zhang, Y.: Numerical simulation of steady mixed convection around two heated circular cylinders in a square enclosure. Heat Transf. Eng. 37(1), 64–75 (2016). https://doi.org/10.1080/01457632.2015.1042343

    Article  Google Scholar 

  15. Rath, S., Dash, S.K.: Natural convection in power-law fluids from a pair of two attached horizontal cylinders. Heat Transf. Eng. (2020). https://doi.org/10.1080/01457632.2020.1716487

  16. Rath, S.; Dash, S.K.: Effect of horizontal spacing on natural convection to power-law fluids from two horizontally aligned cylinders. Heat Transf. Eng. (2020). https://doi.org/10.1080/01457632.2020.1744251

    Article  Google Scholar 

  17. Park, Y.G.; Yoon, H.S.; Ha, M.Y.: Natural convection in square enclosure with hot and cold cylinders at different vertical locations. Int. J. Heat Mass Transf. 55(25–26), 7911–7925 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.012

    Article  Google Scholar 

  18. Park, Y.G.; Ha, M.Y.; Yoon, H.S.: Study on natural convection in a cold square enclosure with a pair of hot horizontal cylinders positioned at different vertical locations. Int. J. Heat Mass Transf. 65, 696–712 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.059

    Article  Google Scholar 

  19. Rath, S., Dash, S.K.: Effect of horizontal spacing on natural convection to power-law fluids from two horizontally aligned cylinders. Heat Transf. Eng. (2020). https://doi.org/10.1080/01457632.2020.1744251

  20. Webb, S.W.; Itamura, M.T.; Francis, N.D.; James, D.L.: CFD calculation of internal natural convection in the annulus between horizontal concentric cylinders. Proc. ASME Summer Heat Transf. Conf. 2003, 911–916 (2003). https://doi.org/10.1115/ht2003-47515

    Article  Google Scholar 

  21. Ansys, I.: ANSYS fluent tutorial guide R18. ANSYS Fluent Tutor. Guid. 18, 724–746 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar M. Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, O.M. Effect of Horizontal Spacing on Natural Convection Heat Transfer from Two Aligned Horizontal Cylinders in a Vented Enclosure. Arab J Sci Eng 47, 8257–8272 (2022). https://doi.org/10.1007/s13369-021-06259-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06259-2

Keywords

Navigation