Skip to main content
Log in

Research on a Treatment Measure for Base Regeneration by Preset Cracking and Grouting for Severe Reflective Cracks

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Reflective cracks in asphalt pavement are major distresses in semi-rigid pavement. To date, grouting and jointing filling are commonly used to solve this problem. However, the grouting materials cannot be filled with cracks that have not propagated to the surface of base. Thus, these measures are limited to reducing the potential cracks in the base. This paper presents a comprehensive treatment measure of base regeneration by preset cracking and grouting (BRPCG) to repair the semi-rigid pavement with severe reflective cracks. The effect of BRPCG on the crack resistance of pavement was investigated by a linear elastic model. The dynamic load and the dynamic load–temperature coupling programs were designed to obtain the mechanical responses of pavement. Furthermore, mechanical indexes based on fatigue and yield failures of pavement materials and crack coefficients were proposed to evaluate the crack resistance and safety of pavement. The results showed that the temperature difference and aging of the original pavement are two factors that should be considered when simulating the pavement structure in service. The temperature of the coupling effect has a greater influence on the tensile stress of the structure layer compared to the dynamic load. The overload conditions only increased the value of the mechanical indexes without changing the variation trend of these indexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Doh, Y.S.; Baek, S.H.; Kim, K.W.: Estimation of relative performance of reinforced overlaid asphalt concretes against reflection cracking due to bending more fracture. Constr. Build. Mater. 23, 1083–1087 (2008). https://doi.org/10.1016/j.conbuildmat.2008.09.027

    Article  Google Scholar 

  2. Gao, Y.: Theoretical analysis of reflective cracking in asphalt pavement with semi-rigid base. Iran. J. Sci. Technol., Trans. Civil Eng. 49, 143–157 (2019). https://doi.org/10.1007/s40996-018-0154-8

    Article  Google Scholar 

  3. Yang, Z.; Zhang, X.; Liu, X.; Guan, X.; Zhang, C.; Niu, Y.: Flexible and stretchable polyurethane/waterglass grouting material. Constr. Build. Mater. 138, 240–246 (2017). https://doi.org/10.1016/j.conbuildmat.2017.01.113

    Article  Google Scholar 

  4. Ahn, H.J.; Lee, J.: Short-term evaluation of crack sealing and filling. Constr. Build. Mater. 113, 843–850 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.014

    Article  Google Scholar 

  5. Pszczoła, M.; Jaczewski, M.; Szydłowski, C.; Judycki, J.; Dołżycki, B.: Evaluation of low temperature properties of rubberized asphalt mixtures. Procedia Eng. 172, 897–904 (2017). https://doi.org/10.1016/j.proeng.2017.02.098

    Article  Google Scholar 

  6. Jaskuła, P.; Stienss, M.; Szydłowski, C.: Effect of polymer fibres reinforcement on selected properties of asphalt mixtures. Procedia Eng. 172, 441–448 (2017). https://doi.org/10.1016/j.proeng.2017.02.026

    Article  Google Scholar 

  7. Zhu, Y.; Dave, E.V.; Rahbar-Rastegar, R.; Daniel, J.S.; Zofka, A.: Comprehensive evaluation of low-temperature fracture indices for asphalt mixtures. Road Mater Pavement Design 18, 467–490 (2017). https://doi.org/10.1080/14680629.2017.1389085

    Article  Google Scholar 

  8. Świeczko-Żurek, B.; Jaskula, P.; Ejsmont, J.A.; Kędzierska, A.; Czajkowski, P.: Rolling resistance and tyre/road noise on rubberised asphalt pavement in Poland. Road Mater. Pavement Design 18, 151–167 (2017). https://doi.org/10.1080/14680629.2016.1159245

    Article  Google Scholar 

  9. Ogundipe, O.M.; Thom, N.; Collop, A.: Investigation of crack resistance potential of stress absorbing membrane interlayers (SAMIs) under traffic loading. Constr. Build. Mater. 38, 658–666 (2013). https://doi.org/10.1016/j.conbuildmat.2012.08.039

    Article  Google Scholar 

  10. Kim, K.W.; Doh, Y.S.; Lim, S.: Mode I reflection cracking resistance of strengthened asphalt concretes. Constr. Build. Mater. 13, 243–251 (1999). https://doi.org/10.1016/S0950-0618(99)00032-X

    Article  Google Scholar 

  11. Gonzalez-Torre, I.; Calzada-Perez, M.A.; Vega-Zamanillo, A.; Castro-Fresno, D.: Evaluation of reflective cracking in pavements using a new procedure that combine loads with different frequencies. Constr. Build. Mater. 75, 368–374 (2015). https://doi.org/10.1016/j.conbuildmat.2014.11.030

    Article  Google Scholar 

  12. Norambuena-Contreras, J.; Gonzalez-Torre, I.; Fernandez-Arnau, D.; Lopez-Riveros, C.: Mechanical damage evaluation of geosynthetics fibres used as anti-reflective cracking systems in asphalt pavements. Constr. Build. Mater. 109, 47–54 (2016). https://doi.org/10.1016/j.conbuildmat.2016.01.057

    Article  Google Scholar 

  13. Giner, E.; Sukumar, N.; Tarancón, J.E.; Fuenmayor, F.J.: An Abaqus implementation of the extended finite element method. Eng. Fract. Mech. 76, 347–368 (2008). https://doi.org/10.1016/j.engfracmech.2008.10.015

    Article  Google Scholar 

  14. Wang, X.; Kai, L.; Yang, Z.; Qian, X.: Investigation of thermal reflective cracking in asphalt pavement using XFEM coupled with DFLUX subroutine and FILM subroutine. Arab. J. Sci. Eng. (2018). https://doi.org/10.1007/s13369-018-3554-y

    Article  Google Scholar 

  15. Chen, T.-L.; Zhang, L.-Y.; Zhang, D.-L.: An FEM/VOF hybrid formulation for fracture grouting modelling. Comput. Geotech. 58, 14–27 (2014). https://doi.org/10.1016/j.compgeo.2014.02.002

    Article  Google Scholar 

  16. Bozkurt, D. Three-dimensional finite element analysis to evaluate reflective cracking potential in asphalt concrete overlays. Dissertation, University of Illinois at Urbana-Champaign (2002)

  17. Lagos-Varas, M.; Movilla-Quesada, D.; Arenas, J.P.; Raposeiras, A.C.; Castro-Fresno, D.; Calzada-Perez, M.A.; Vega-Zamanillo, A.; Maturana, J.: Study of the mechanical behavior of asphalt mixtures using fractional rheology to model their viscoelasticity. Constr. Build. Mater. 200, 124–134 (2019). https://doi.org/10.1016/j.conbuildmat.2018.12.073

    Article  Google Scholar 

  18. Liu, H.; Luo, R.; Lv, H.: Establishing continuous relaxation spectrum based on complex modulus tests to construct relaxation modulus master curves in compliance with linear viscoelastic theory. Constr. Build. Mater. (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.204

    Article  Google Scholar 

  19. Luo, R.; Liu, H.: Improving the accuracy of dynamic modulus master curves of asphalt mixtures constructed using uniaxial compressive creep tests. J. Mater. Civil Eng. (2017). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001873

    Article  Google Scholar 

  20. Judycki, J.: A new viscoelastic method of calculation of low-temperature thermal stresses in asphalt layers of pavements. Int. J. Pavement Eng. 19(1), 24–36 (2018). https://doi.org/10.1080/10298436.2016.1149840

    Article  Google Scholar 

  21. Baek, J. Modeling reflective cracking development in hot-mix asphalt overlays and quantification of control techniques. Dissertation, University of Illinois at Urbana-Champaign (2010)

  22. Dave, E.V.; Buttlar, W.G.: Thermal reflective cracking of asphalt concrete overlays. Int. J. Pavement Eng. 11, 477–488 (2010). https://doi.org/10.1080/10298430903578911

    Article  Google Scholar 

  23. Shen, W.; Kirkner, D.J.: Thermal cracking of viscoelastic asphalt-concrete pavement. J. Eng. Mech. 127, 700–709 (2001). https://doi.org/10.1061/(ASCE)0733-9399(2001)127:7(700)

    Article  Google Scholar 

  24. Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M.C.: Reuse of deconstructed tires as anti-reflective cracking mat systems in asphalt pavements. Constr. Build. Mater. 53, 182–189 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.101

    Article  Google Scholar 

  25. Pan, P.; Wu, S.; Hu, X.; Wang, P.; Liu, Q.: Effect of freezing-thawing and ageing on thermal characteristics and mechanical properties of conductive asphalt concrete. Constr. Build. Mater. (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.135

    Article  Google Scholar 

  26. Gao, J.P.; Fan, T.T.; Ping, K.L.: Influence of freeze-thaw cycles on thermal conductivity, water permeability and mechanical properties of asphalt mixtures. Iran. J. Sci. Technol.—Trans. Civil Eng (2020). https://doi.org/10.1007/s40996-020-00491-w

    Article  Google Scholar 

  27. Ling, Z.: Research on thermal physical parameters of asphalt mixture. Dissertation, Chang'an University (2011)

  28. Junlong, L.: Study on dynamic modulus and crack propagation of the asphalt pavement. Dissertation, Chang'an University (2016)

  29. Shixin, L.: Study on crack sealant interface mechanical response under the action of transient temperature field and wheel load dissertation, Harbin Institute of Technology (2015)

  30. Rahmani, E.; Darabi, M.K.; Little, D.N.; Masad, E.A.: Constitutive modeling of coupled aging-viscoelastic response of asphalt concrete. Constr. Build. Mater. 131, 1–15 (2017). https://doi.org/10.1016/j.conbuildmat.2016.11.014

    Article  Google Scholar 

  31. Ling, M.; Luo, X.; Gu, F.; Lytton, R.L.: Time-temperature-aging-depth shift functions for dynamic modulus master curves of asphalt mixtures. Constr. Build. Mater. 157, 943–951 (2017). https://doi.org/10.1016/j.conbuildmat.2017.09.156

    Article  Google Scholar 

  32. Zhendong, Q.; Yuming, Y.; Tuanjie, C.; Zhan, L.: Dynamic response of asphalt pavement under moving loads with low and variable speed. J. Central South Univ. 46, 1140–1146 (2015). https://doi.org/10.11817/j.issn.1672-7207.2015.03.047

    Article  Google Scholar 

  33. Kezhen, Y.; Xiaowen, Z.; Tingwei, S.; Jun, L.: Influence of contact form of load on mechanical index of pavement structure. J. Chongqing Jiaotong Univ. 36, 24–30 (2017)

    Google Scholar 

  34. Yin-Chuan, G.; Li-Gen, W.; Aiqin, S.; Pin-Pin, G.: Dynamic analysis of graded crushed stone as base of asphalt pavement. J. Highw. Transp. Res. Dev. 33, 27–33 (2016). https://doi.org/10.3969/j.issn.1002-0268.2016.01.005

    Article  Google Scholar 

  35. Zuoren, Y.: Analysis of the temperature field in layered pavement system. J. Tongji Univ. 3, 76–85 (1984)

    Google Scholar 

  36. Ai, C.; Rahman, A.; Xiao, C.; Yang, E.; Qiu, Y.: Analysis of measured strain response of asphalt pavements and relevant prediction models. Int. J. Pavement Eng. 18, 1089–1097 (2016). https://doi.org/10.1080/10298436.2016.1149836

    Article  Google Scholar 

  37. Sulejmani, P.; Said, S.; Agardh, S.; Ahmed, A.: Impact of temperature and moisture on the tensile strain of asphalt concrete layers. Int. J. Pavement Eng. (2020). https://doi.org/10.1080/10298436.2020.1715404

    Article  Google Scholar 

  38. Hou, Y.; Ji, X.; Su, X.: Mechanical properties and strength criteria of cement-stabilised recycled concrete aggregate. Int. J. Pavement Eng. 20, 1–10 (2017). https://doi.org/10.1080/10298436.2017.1293266

    Article  Google Scholar 

  39. Xinhe, O.; Youyun, L.; Peihong, L.; Lei, L.: Study on splitting tensile strength about asphalt mixtures with different diameter aggregates. Highw. Eng. 43, 300–304 (2018). https://doi.org/10.3969/j.issn.1674-0610.2018.05.058

    Article  Google Scholar 

  40. Gang, W.; Li-Ping, L.; Li-Jun, S.: Research on shearing and compressive resilient modulus experiment of asphalt concrete. J. Build. Mater. 15, 279–282 (2012). https://doi.org/10.3969/j.issn.1007-9629.2012.02.026

    Article  Google Scholar 

  41. Feng, L.; Li-Jun, S.: Analysis of the influence of base course modulus on the mechanics performance of asphalt pavement. J. Highw. Transp. Res. Dev. 23, 41–43 (2006). https://doi.org/10.3969/j.issn.1002-0268.2006.10.010

    Article  Google Scholar 

  42. Minjiang, Z.; Yan, S.; Juan, D.: The influences of surface shear stress peak value of semi-rigid base course asphalt pavement structure. J. Shenyang Jianzhu Univ. (2007). https://doi.org/10.3321/j.issn:1671-2021.2007.02.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all the reviewers of this paper for their comments and suggestions.

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 51778061) and the Fundamental Research Funds for the Central Universities, CHD (Grant No.300102219713).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiqin Shen or Zhenghua Lyu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Z., Shen, A., Lyu, Z. et al. Research on a Treatment Measure for Base Regeneration by Preset Cracking and Grouting for Severe Reflective Cracks. Arab J Sci Eng 47, 4695–4712 (2022). https://doi.org/10.1007/s13369-021-06246-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06246-7

Keywords

Navigation