Skip to main content
Log in

Study on Gelation, Properties and Micromorphology of Modified Nano-TiO2 Crosslinking Hydroxypropyl Guar Gum

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the study, a hydroxypropyl guar gum (HPG) gel was prepared using modified nano-TiO2 particles as a crosslinking agent. Firstly, nano-TiO2 particles were prepared using the sol–gel method. Nano-TiO2 particles were spherical and densely distributed; the effective particle size was 29.0 nm, and particle size distribution was uniform. Then, the modified nano-TiO2 particles were synthesized by modifying nano-TiO2 with polyhydroxy carboxylate. The microstructure of nano-TiO2 and modified nano-TiO2 crosslinked HPG gel were investigated. The layered distribution and crosslinked network of the modified nano-TiO2 gel were denser than that of nano-TiO2 crosslinked HPG gel. The modified nano-TiO2 crosslinked HPG gel shows stable viscoelasticity at 60 ℃. Compared with nano-TiO2 crosslinked HPG gel, it has better temperature resistance and shear resistance, and can adapt to formation fracturing at 140 ℃, indicating that this gel may have potential application in fracturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. A brief introduction to ultra-deep Wells in the world. Geology in China, 46(03):672 (2019)

  2. Sun, W.W.: Current status and development trend of deep and ultra-deep well drilling technology. China Pet. Chem. Stand. Qual. 40(09), 236–237 (2020)

    Google Scholar 

  3. Hu, K.X.; Wang, X.H.: Research on the development status of fracturing fluid technology. Petrochem. Ind. Appl. 34(2), 1673–5285 (2015)

    Google Scholar 

  4. Li, H. H.: Study on synthesis of high temperature resistant guar gum crosslinking agent and properties of fracturing fluid (2014)

  5. Chen, F.; Yang, Y.; He, J., et al.: The gelation of hydroxypropyl guar gum by nano-ZrO2. Polym. Adv. Technol. 29(1), 587–593 (2018)

    Article  Google Scholar 

  6. Yue, Z. Q.: Preparation of PT-1 aluminum crosslinking agent and its delayed crosslinking system. Special Oil and Gas Reservoirs, pp. 74–76 (2008)

  7. Liu, T.Y.; Tang, T.; Dai, X.L.: Synthesis and evaluation of a thickening agent for aluminum cross-linked fracturing fluid. Petrochem. Ind. 47(02), 175–180 (2018)

    Google Scholar 

  8. Mao, J.; Wang, D.; Yang, X., et al.: Experimental study on high temperature resistance aluminum-crosslinked non-aqueous fracturing fluids. J. Mol. Liq. 258, 202–210 (2018)

    Article  Google Scholar 

  9. Zhao, J.; Chen, P.; Liu, Y., et al.: Development of an LPG fracturing fluid with improved temperature stability. J. Petrol. Sci. Eng. 162, 548–553 (2018)

    Article  Google Scholar 

  10. Brannon, H. D., Ault, M. G.: New, Delayed borate-crosslinked fluid provides improved fracture conductivity in high-temperature applications. SPE 22838, (1991)

  11. Li, Y. L.: Organic boron crosslinking agent SD2–2 is used in vegetable gum fracturing fluid. Oil Field Chemical pp. 323–325, (1999)

  12. Cui, J.; Zhang, R.S.; Zhao, M.Y., et al.: Synthesis, characterization and performance evaluation of a new organoboron crosslinking agent for fracturing fluid. Appl. Chem. 46(6), 1055–1057 (2017)

    Google Scholar 

  13. Zhu, L.Y.; Yi, Z.; Zhang, W.L.: Preparation and properties of organoboron high temperature delayed crosslinking agent. Pet. Chem. Ind. 46(11), 1413–1418 (2017)

    Google Scholar 

  14. Barati, R.; Liang, J.T.: A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.40735

    Article  Google Scholar 

  15. Al-Muntasheri, G.A.: A critical review of hydraulic-fracturing fluids for moderate-to ultralow-permeability formations over the last decade. SPE Prod. Oper. 29(04), 243–260 (2014). https://doi.org/10.2118/169552-PA

    Article  Google Scholar 

  16. Luo, M.L.; Yang, Z.M.; Gong, J.C.: Research progress of fracturing fluid technology and its high-pressure rheological properties. Oil Field Chem. 35(4), 715–720 (2018)

    Google Scholar 

  17. Lafitte, V.; Tustin, G. J.; Drochon, B., et al.: Nanomaterials in fracturing applications. In: SPE international oilfield nanotechnology conference and exhibition. Society of petroleum engineers, (2012)

  18. Lafitte, V.; Corde, L.; Pirolli, L., et al.: Thickening of fluids. US 201303129790A1, (2013)

  19. Lafitte, V.; Lee, J. C.; Ali, S. A., et al. Fluids and methods including nanocellulose. US Patent 20130274149 A1, (2013)

  20. Wang, K.; Wang, Y.; Ren, J., et al.: Highly efficient nano boron crosslinker for low-polymer loading fracturing fluid system. In: SPE/IATMI Asia Pacific oil & gas conference and exhibition. Society of petroleum engineers, pp. 1–11 (2017)

  21. He, D.Q.; Wang, Q.; Yu, Q., et al.: Advances in preparation methods of titanium dioxide one-dimensional nano-array. Heilongjiang Sci. 8(08), 42–44 (2017)

    Google Scholar 

  22. Yang, C.X.; Dong, W.P.; Qiao, G.M., et al.: Research progress of titanium dioxide modification and its application. Chem. New Mater. 43(10), 27–29 (2015)

    Google Scholar 

  23. Gupta, S.M.; Tripathi, M.: A review on the synthesis of TiO2 nanoparticles by solution route. Cent. Eur. J. Chem. 10(2), 279–294 (2012)

    Google Scholar 

  24. Usui, H.; Miyamoto, O.; Nomiyama, T., et al.: Photo-rechargeability of TiO2 film electrodes prepared by pulsed laser deposition. Sol. Energy Mater. Sol. Cells 86(1), 123–134 (2005). https://doi.org/10.1016/j.solmat.2004.06.006

    Article  Google Scholar 

  25. Zhang, H.; Finnegan, M.; Banfield, J.F.: Preparing single-phase nanocrystalline anatase from amorphous titania with particle sizes tailored by temperature. Nano Lett. 1(2), 81–85 (2001)

    Article  Google Scholar 

  26. Soria, J.; Sanz, J.; Sobrados, I., et al.: Water-hydroxyl interactions on small anatase nanoparticles prepared by the hydrothermal route. J. Phys. Chem. C 114(39), 16534–16540 (2010). https://doi.org/10.1021/jp105131w

    Article  Google Scholar 

  27. Putzig, D. E.; St Clair, J. D.: A new delay additive for hydraulic fracturing fluids. In: proceedings of SPE hydraulic fracturing technology conference. Society of petroleum engineers, pp. 1–5 (2007)

  28. Sokhanvrian, K.; Nasr-El-Din, H.A.; Harper, T.L.: Effect of ligand type attached to zirconium-based crosslinkers and the effect of a new dual crosslinker on the properties of crosslinked carboxymethylhydroxypropylguar. Soc. Pet. Eng. 24(4), 1741–1756 (2019)

    Google Scholar 

  29. Parra, R.; Góes, M.S.; Castro, M.S., et al.: Reply to comment on “reaction pathway to the synthesis of anatase via the chemical modification of titanium isopropoxide with acetic acid.” Chem. Mater. 20(10), 3541 (2008). https://doi.org/10.1021/cm800811b

    Article  Google Scholar 

  30. Dunuwila, D.D.; Gagliardi, C.D.; Berglund, K.A.: Application of controlled hydrolysis of titanium (IV) isopropoxide to produce sol-gel-derived thin films. Chem. Mater. 6(9), 1556–1562 (1994). https://doi.org/10.1021/cm00045a013

    Article  Google Scholar 

  31. Venz, P.A.; Kloprogge, J.T.; Frost, R.L.: Chemically modified titania hydrolysates: physical properties. Langmuir 16(11), 4962–4968 (2000). https://doi.org/10.1021/la990830u

    Article  Google Scholar 

  32. Huan, C., C.; Li, X., R.; Yang, X., W., et al.: Preparation of boron-titanium composite crosslinking agent and its application in fenugreek gum fracturing system. Fine Chemicals, (2015)

  33. Wang, L.; Sheng, Y., D.; Yang, X., W., et al.: Preparation of boron-titanium composite crosslinking agent and its application in polyvinyl alcohol fracturing fluid. Advances in Fine Petrochemicals, (2010)

  34. Wei, Z., Q.; Li, X., R.; Liu, G., J., et al.: Synthesis and rheological property evaluation of organic titanium crosslinking agent. Science technology and Engineering, (2013)

  35. Lafitte, V.; Tustin, G., J.; Drochon, B., et al.: Nanomaterials in fracturing applications. SPE International Oilfield Nanotechnology Conference and Exhibition. Society of Petroleum Engineers, (2012)

  36. Lafitte, V.; Lee, J.; C., Ali; S., A., et al.: Fluids and methods including nanocellulose. US Patent 20130274149 A1, (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Deng, Y., He, K. et al. Study on Gelation, Properties and Micromorphology of Modified Nano-TiO2 Crosslinking Hydroxypropyl Guar Gum. Arab J Sci Eng 47, 7001–7011 (2022). https://doi.org/10.1007/s13369-021-06242-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06242-x

Keywords

Navigation