Skip to main content
Log in

Three-Dimensional Numerical Simulation and Analysis of Geomechanical Controls of Hydraulic Fracturing in Heterogeneous Formations

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The hydraulic fracture (HF) morphology and corresponding stimulated reservoir volume (SRV) are significantly dependent on the geomechanical factors of the formation. A better understanding of the hydraulic fracturing mechanism under different reservoir attributes is crucial for fracability evaluation and fracturing treatment optimization. In this work, the geomechanical controls on hydraulic fracturing in a heterogeneous formation and its fracability are investigated using a three-dimensional (3D) fully coupled hydraulic–mechanical–damage (HMD) model. Rock heterogeneity, which causes nonlinear progressive failure behavior, is considered in this model by assuming that the mechanical parameters of elements follow a Weibull distribution. The elastic damage mechanics and Darcy’s law describe the damage process and fluid flow in elements, respectively. The element permeability is dependent on its state, which describes the effect of stress on the seepage field. The HF width is conceptually represented by the aperture of fractures, which depends on the failure mechanism of the damaged element. The coupled equations are solved numerically using the finite element method. The model is verified with experimental results of HF network propagation and multi-fracture interference. Then, a series of numerical simulations were performed to investigate the geomechanical controls of HF geometry and SRV in heterogeneous formations. At last, the optimal conditions for the formation of a complex HF network are further discussed according to the numerical results, based on which an improved fracability index is established. The results show that the numerical model can capture the 3D nature of the HFs and reproduce the HF network propagation and multi-fracture interference process. The complex HFs are more likely to generate in formations with high brittleness, large natural fracture (NF) density, small horizontal stress difference, and small fracture toughness. This study provides a reliable numerical method for hydraulic fracturing simulation and offers some reference for the fracability evaluation and fracturing treatment design in heterogeneous formations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Kivi, I.R.; Ameri, M.; Molladavoodi, H.: Shale brittleness evaluation based on energy balance analysis of stress-strain curves. J. Pet. Sci. Eng. 167, 1–19 (2018)

    Article  Google Scholar 

  2. Heng, S.; Liu, X.; Li, X.: Experimental and numerical study on the non-planar propagation of hydraulic fractures in shale. J. Pet. Sci. Eng. 179, 410–426 (2019)

    Article  Google Scholar 

  3. Shueili, A.; Manji, A.A.; Rylance, M.: Khazzan: making the most of the fracturing sweet-spot between verticals and horizontals. In: SPE Hydraulic Fracturing Technology Conference (2016)

  4. Hu, Y.; Li, X.; Zhang, Z.; He, J.; Li, G.: Numerical investigation on the hydraulic stimulation of naturally fractured longmaxi shale reservoirs using an extended discontinuous deformation analysis (DDA) method. Geomech. Geophys. Geo-Energy Geo-Resour. 6(4), 1–21 (2020)

    Google Scholar 

  5. Shao, Y.Y.; Huang, X.R.; Xing, Y.: An integrated study on the sensitivity and uncertainty associated with the evaluation of stimulated reservoir volume (SRV). J. Pet. Sci. Eng. 159, 903–914 (2017)

    Article  Google Scholar 

  6. Hou, B.; Zhang, R.X.; Zeng, Y.J.: Analysis of hydraulic fracture initiation and propagation in deep shale formation with high horizontal stress difference. J. Pet. Sci. Eng. 170, 231–243 (2018)

    Article  Google Scholar 

  7. Mahmood, S.; Araujo, C.; Kamy, S.: Using embedded discrete fracture model (EDFM) in numerical simulation of complex hydraulic fracture networks calibrated by microseismic monitoring data. J. Nat. Gas Sci. Eng. 55, 495–507 (2018)

    Article  Google Scholar 

  8. Fisher, M.K.; Heinze, J.R.; Harris, C.D.: Optimizing horizontal completion techniques in the Barnett shale using microseismic fracture mapping. In: SPE Annual Technical Conference and Exhibition, 26–29 September, Houston, Texas, USA, SPE-90051-MS (2004)

  9. Rahman, M.M.; Hossain, M.M.; Crosby, D.G.: Analytical, numerical and experimental investigations of transverse fracture propagation from horizontal wells. J. Pet. Sci. Eng. 35, 127–150 (2002)

    Article  Google Scholar 

  10. Salimzadeh, S.; Usui, T.; Paluszny, A.: Finite element simulations of interactions between multiple hydraulic fractures in a poroelastic rock. Int. J. Rock Mech. Min. 99, 9–20 (2017)

    Article  Google Scholar 

  11. Fan, H.; Li, S.; Feng, X.; Zhu, X.: A high-efficiency 3D boundary element method for estimating the stress/displacement field induced by complex fracture networks. J. Pet. Sci. Eng. 187, 1068–1115 (2020)

    Article  Google Scholar 

  12. Morgan, W.E.; Aral, M.M.: An implicitly coupled hydro-geomechanical model for hydraulic fracture simulation with the discontinuous deformation analysis. Int. J. Rock Mech. Min. 73, 82–94 (2015)

    Article  Google Scholar 

  13. Sheng, M.; Li, G.: XFEM modeling of multistage hydraulic fracturing in anisotropic shale formations. J. Pet. Sci. Eng. 162, 801–812 (2018)

    Article  Google Scholar 

  14. Zou, Y.; Meng, X.; Zhang, S.: Numerical investigation into the influence of bedding plane on hydraulic fracture network propagation in shale formations. Rock Mech. Rock Eng. 49, 3597–3614 (2016)

    Article  Google Scholar 

  15. Li, L.C.; Meng, Q.M.; Wang, S.Y.; Li, G.; Tang, C.A.: A numerical investigation of the hydraulic fracturing behaviour of conglomerate in Glutenite formation. Acta Geotech. 8(6), 597–618 (2013)

    Article  Google Scholar 

  16. Zou, J.P.; Jiao, Y.Y.; Tang, Z.; Ji, Y.; Wang, J.: Effect of mechanical heterogeneity on hydraulic fracture propagation in unconventional gas reservoirs. Comput. Geotech. 125, 103652 (2020)

    Article  Google Scholar 

  17. Yang, B.C.; Xue, L.; Duan, Y.T.; Wang, M.M.: Correlation study between fracability and brittleness of shale-gas reservoir. Geomech. Geophys. Geo-Energy Geo-Resour. 7(2), 1–13 (2021)

    Google Scholar 

  18. Damjanac, B.; Cundall, P.: Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs. Comput. Geotech. 71, 283–294 (2016)

    Article  Google Scholar 

  19. Yuan, J.L.; Zhou, J.L.; Liu, S.J.; Feng, Y.C.; Deng, J.G.; Xie, Q.M.; Lu, Z.H.: An improved fracability evaluation method for shale reservoirs based on new fracture toughness prediction models. SPE J. 22(5), 1704–1713 (2017)

    Article  Google Scholar 

  20. Zhu, H.Y.; Tao, L.; Liu, D.; Liu, Q.; Jin, X.: Fracability estimation for Longmaxi shale: coupled brittleness, stress-strain and fracture. Arab. J. Sci. Eng. 43(11), 6639–6652 (2018)

    Article  Google Scholar 

  21. Sui, L.L.; Ju, Y.; Yang, Y.M.; Yang, Y.; Li, A.S.: A quantification method for shale fracability based on analytic hierarchy process. Energy 115(1), 637–645 (2016)

    Article  Google Scholar 

  22. Zhang, Q.; Zhang, X.P.; Sun, W.: A review of laboratory studies and theoretical analysis for the interaction mode between induced hydraulic fractures and pre-existing fractures. J. Nat. Gas Sci. Eng 86, 103719 (2020)

    Article  Google Scholar 

  23. Zhang, J.; Ai, C.; Li, Y.W.; Zeng, J.; Qiu, D.Z.: Brittleness evaluation index based on energy variation in the whole process of rock failure. Chin. J. Rock Mech. Eng. 36(6), 1326–1340 (2017)

    Google Scholar 

  24. Sui, H.Y.; Gao, W.; Hu, R.L.: A new evaluation method for the fracability of a shale reservoir based on the structural properties. Geofluids 4, 1–14 (2019)

    Article  Google Scholar 

  25. Tang, C.A.; Wang, W.: A new approach to numerical method of modelling geological processes and rock engineering problems-continuum to discontinuum and linearity to nonlinearity. Eng. Geol. 49, 207–214 (1998)

    Article  Google Scholar 

  26. Li, L.C.; Tang, C.A.; Li, G.; Wang, S.Y.; Liang, Z.Z.; Zhang, Y.B.: Numerical simulation of 3D hydraulic fracturing based on an improved flow-stress-damage model and a parallel FEM technique. Rock Mech. Rock Eng. 45, 801–818 (2012)

    Google Scholar 

  27. Li, T.J.; Li, L.; Tang, C.A.; Zhang, Z.L.; Li, M.; Zhang, L.Y.: A coupled hydraulic-mechanical-damage geotechnical model for simulation of fracture propagation in geological media during hydraulic fracturing. J. Pet. Sci. Eng. 173, 1390–1416 (2019)

    Article  Google Scholar 

  28. Yuan, S.C.; Harrison, J.P.: Development of a hydro-mechanical local degradation approach and its application to modelling fluid flow during progressive fracturing of heterogeneous rocks. Int. J. Rock Mech. Min. Sci. 42(7), 961–984 (2005)

    Article  Google Scholar 

  29. Louis, C.: Rock hydraulics. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 12(4), 59–59 (1975)

    Article  Google Scholar 

  30. Mayerhofer, M.J.; Lolon, E.; Warpinski, N.R.: What is stimulated reservoir volume? SPE Prod. Oper. 25(1), 89–98 (2010)

    Google Scholar 

  31. Cox, S.J.D.; Meredith, P.G.: Microcrack formation and material softening in rock measured by monitoring AE. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30, 11–24 (1993)

    Article  Google Scholar 

  32. Tang, C.A.: Numerical simulation on progressive failure leading to collapse and associated seismicity. Int. J. Rock Mech. Min. Sci. 34, 249–262 (1997)

    Article  Google Scholar 

  33. Tang, C.A.; Chen, Z.H.; Xu, X.H.; Li, C.: A theoretical model for Kaiser effect in rock. Pure Appl. Geophys. 150(2), 203–215 (1997)

    Article  Google Scholar 

  34. Zhou, J.; Jin, Y.; Chen, M.: Experimental investigation of hydraulic fracturing in random naturally fractured blocks. Int. J. Rock Mech. Min. Sci. 47(7), 1193–1199 (2010)

    Article  Google Scholar 

  35. Rahman, M.M.; Hossain, M.M.; Crosby, D.G.; Rahman, M.K.; Rahman, S.S.: Analytical, numerical and experimental investigations of transverse fracture propagation from horizontal wells. J. Pet. Sci. Eng. 35, 127–150 (2002)

    Article  Google Scholar 

  36. Wang, H.: Numerical investigation of fracture spacing and sequencing effects on multiple hydraulic fracture interference and coalescence in brittle and ductile reservoir rocks. Eng. Fract. Mech. 157, 107–124 (2016)

    Article  Google Scholar 

  37. Bryant, E.C.; Hwang, J.; Sharma, M.M.: Arbitrary fracture propagation in heterogeneous poroelastic formations using a finite volume-based cohesive zone model. In: SPE Hydraulic Fracturing Technology Conference, p. 17. Society of Petroleum Engineers, The Woodlands (2015)

  38. Wu, R.; Kresse, O.; Weng, X.; Cohen, C.; Gu, H.: Modeling of interaction of hydraulic fractures in complex fracture networks. In: SPE Hydraulic Fracturing Technology Conference, p. 14. Society of Petroleum Engineers, The Woodlands (2012)

  39. Cipolla, C.L.; Warpinski, N.R.; Mayerhofer, M.J.: The Relationship Between Fracture Complexity, Reservoir Properties, and Fracture-Treatment Design 115769. SPE, Dallas (2008)

    Google Scholar 

  40. Tan, P.; Jin, Y.; Han, K.: Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation. Fuel 206, 482–493 (2017)

    Article  Google Scholar 

  41. Rickman, R.; Mullen, M.; Pertre, E.; Grieser, B.; Kundert, D.: A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale. In: Proc. the SPE Annual Technical Conference and Exhibition, Denver, Sep. 21–24. SPE 115258 (2008)

  42. Shimizu, H.; Ito, T.; Tamagawa, T.; Tezuka, K.: A study of the effect of brittleness on hydraulic fracture complexity using a flow-coupled discrete element method. J. Pet. Sci. Eng. 160, 372–383 (2017)

    Article  Google Scholar 

  43. Wang, B.; Deng, J.X.; Liu, X.W.; Pan, J.G.; Wang, J.Q.; Xiao, S.Y.: The influence of rock composition on dynamic and static elastic properties of Longmaxi formation shales. Chin. J. Geophys. 62(12), 4833–4845 (2020)

    Google Scholar 

  44. Zhao, X.Y.; Zeng, L.B.; Zu, K.W.; Hu, X.Y.; Jiao, J.; Zhu, L.; Shi, J.X.: Brittleness characteristics and its control on natural fractures in tight reservoirs: a case study from Chang 7 tight reservoir in Longdong area of the Ordos Basin. Oil Gas Geol. 37(1), 62–71 (2018)

    Google Scholar 

  45. Chen, Z.; He, C.; Ma, G.; Xu, G.; Ma, C.: Energy damage evolution mechanism of rock and its application to brittleness evaluation. Rock Mech. Rock Eng. 52(4), 1265–1274 (2019)

    Article  Google Scholar 

  46. Yang, J.; Lian, H.; Li, L.: Investigating the effect of confining pressure on fracture toughness of CO2-saturated coals. Eng. Fract. Mech. 242(62), 107496 (2020)

    Google Scholar 

  47. Yang, Z.; Rui, H.; Li, X.; Li, Z.; Liu, Z.: A Comprehensive Approach for Fracability Evaluation in Naturally Fractured Sandstone Reservoirs, pp. 1–27 (2019)

Download references

Acknowledgements

This work was conducted with support from the National Natural Science Foundation of China (Grant Nos. 51879041 and 51761135102), the National Science and Technology Major Project of China (Grant No. 2017ZX05072), and the Fundamental Research Funds for the Central Universities (No. N180105029). The authors express their sincere thanks to the reviewers for their helpful comments and suggestions for improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingyang Zhai or Lianchong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, M., Li, L., Wang, Z. et al. Three-Dimensional Numerical Simulation and Analysis of Geomechanical Controls of Hydraulic Fracturing in Heterogeneous Formations. Arab J Sci Eng 47, 11533–11552 (2022). https://doi.org/10.1007/s13369-021-06225-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06225-y

Keywords

Navigation